CircNNTSR: An R Package for the Statistical Analysis of Circular, Multivariate Circular, and Spherical Data Using Nonnegative Trigonometric Sums

被引:17
|
作者
Jose Fernandez-Duran, Juan [1 ]
Mercedes Gregorio-Dominguez, Maria [2 ]
机构
[1] Inst Tecnol Autonomo Mexico, Sch Business, Rio Hondo 1, Mexico City 01080, DF, Mexico
[2] Inst Tecnol Autonomo Mexico, Dept Actuarial Sci, Rio Hondo 1, Mexico City 01080, DF, Mexico
来源
JOURNAL OF STATISTICAL SOFTWARE | 2016年 / 70卷 / 06期
关键词
Fourier series; likelihood ratio test; maximum likelihood estimation; smooth Riemann manifold; ACTIVITY PATTERNS; DISTRIBUTIONS;
D O I
10.18637/jss.v070.i06
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The statistical analysis of circular, multivariate circular, and spherical data is very important in different areas, such as paleomagnetism, astronomy and biology. The use of nonnegative trigonometric sums allows for the construction of flexible probability models for these types of data to model datasets with skewness and multiple modes. The R package CircNNTSR includes functions to plot, fit by maximum likelihood, and simulate models based on nonnegative trigonometric sums for circular, multivariate circular, and spherical data. For maximum likelihood estimation of the models for the three different types of data an efficient Newton-like algorithm on a hypersphere is used. Examples of applications of the functions provided in the CircNNTSR package to actual and simulated datasets are presented and it is shown how the package can be used to test for uniformity, homogeneity, and independence using likelihood ratio tests.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Multivariate nonnegative trigonometric sums distributions for high-dimensional multivariate circular data
    Fernandez-Duran, Juan Jose
    Gregorio-Dominguez, Maria Mercedes
    COMPUTATIONAL STATISTICS, 2024,
  • [2] Regression models for circular data based on nonnegative trigonometric sums
    Fernandez-Duran, Juan Jose
    Gregorio-Dominguez, Maria Mercedes
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 230
  • [3] Circular distributions based on nonnegative trigonometric sums
    Fernández-Durán, JJ
    BIOMETRICS, 2004, 60 (02) : 499 - 503
  • [4] Models for circular-linear and circular-circular data constructed from circular distributions based on nonnegative trigonometric sums
    Fernandez-Duran, J. J.
    BIOMETRICS, 2007, 63 (02) : 579 - 585
  • [5] Modeling angles in proteins and circular genomes using multivariate angular distributions based on multiple nonnegative trigonometric sums
    Jose Fernandez-Duran, Juan
    Mercedes Gregorio-Dominguez, Maria
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2014, 13 (01) : 1 - 18
  • [6] Distributions for spherical data based on nonnegative trigonometric sums
    J. J. Fernández-Durán
    M. M. Gregorio-Domínguez
    Statistical Papers, 2014, 55 : 983 - 1000
  • [7] Distributions for spherical data based on nonnegative trigonometric sums
    Fernandez-Duran, J. J.
    Gregorio-Dominguez, M. M.
    STATISTICAL PAPERS, 2014, 55 (04) : 983 - 1000
  • [8] Sums of Independent Circular Random Variables and Maximum Likelihood Circular Uniformity Tests Based on Nonnegative Trigonometric Sums Distributions
    Fernandez-Duran, Juan Jose
    Gregorio-Dominguez, Maria Mercedes
    APPLIEDMATH, 2024, 4 (02): : 495 - 516
  • [9] Fitting a Circular Distribution based on Nonnegative Trigonometric Sums for Wind Direction in Malaysia
    Masseran, Nurulkamal
    Razali, Ahmad Mahir
    Ibrahim, Kamarulzaman
    Zaharim, Azami
    Sopian, Kamaruzzaman
    2ND ISM INTERNATIONAL STATISTICAL CONFERENCE 2014 (ISM-II): EMPOWERING THE APPLICATIONS OF STATISTICAL AND MATHEMATICAL SCIENCES, 2015, 1643 : 305 - 311
  • [10] Wrapped: An R package for circular data
    Nadarajah, Saralees
    Zhang, Yuanyuan
    PLOS ONE, 2017, 12 (12):