Nonlinear filtering properties of detrended fluctuation analysis

被引:24
|
作者
Kiyono, Ken [1 ]
Tsujimoto, Yutaka [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka, Japan
关键词
Time-series analysis; Fractal; Hurst exponent; TIME-SERIES; MOVING AVERAGE;
D O I
10.1016/j.physa.2016.06.129
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Detrended fluctuation analysis (DFA) has been widely used for quantifying long-range correlation and fractal scaling behavior. In DFA, to avoid spurious detection of scaling behavior caused by a nonstationary trend embedded in the analyzed time series, a detrending procedure using piecewise least-squares fitting has been applied. However, it has been pointed out that the nonlinear filtering properties involved with detrending may induce instabilities in the scaling exponent estimation. To understand this issue, we investigate the adverse effects of the DFA detrending procedure on the statistical estimation. We show that the detrending procedure using piecewise least-squares fitting results in the nonuniformly weighted estimation of the root-mean-square deviation and that this property could induce an increase in the estimation error. In addition, for comparison purposes, we investigate the performance of a centered detrending moving average analysis with a linear detrending filter and sliding window DFA and show that these methods have better performance than the standard DFA. (C) 2016 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:807 / 815
页数:9
相关论文
共 50 条
  • [1] Effect of the signal filtering on detrended fluctuation analysis
    Li, Ruixue
    Wang, Jiang
    Chen, Yingyuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 446 - 453
  • [2] Effect of nonlinear filters on detrended fluctuation analysis
    Chen, Z
    Hu, K
    Carpena, P
    Bernaola-Galvan, P
    Stanley, HE
    Ivanov, PC
    PHYSICAL REVIEW E, 2005, 71 (01):
  • [3] Statistical properties of detrended fluctuation analysis
    Crato, N.
    Linhares, R. R.
    Lopes, S. R. C.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (06) : 625 - 641
  • [4] Probabilistic properties of detrended fluctuation analysis for Gaussian processes
    Sikora, Grzegorz
    Holl, Marc
    Gajda, Janusz
    Kantz, Holger
    Chechkin, Aleksei
    Wylomanska, Agnieszka
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [5] Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis
    Lee, JM
    Kim, DJ
    Kim, IY
    Park, KS
    Kim, SI
    MEDICAL ENGINEERING & PHYSICS, 2004, 26 (09) : 773 - 776
  • [6] Consistency of detrended fluctuation analysis
    Lovsletten, O.
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [7] Revisiting detrended fluctuation analysis
    Bryce, R. M.
    Sprague, K. B.
    SCIENTIFIC REPORTS, 2012, 2 : 1 - 6
  • [8] Revisiting detrended fluctuation analysis
    R. M. Bryce
    K. B. Sprague
    Scientific Reports, 2
  • [9] Smoothed detrended fluctuation analysis
    Linhares, Raquel Romes
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (17) : 3388 - 3397
  • [10] Detecting mental EEG properties using detrended fluctuation analysis
    Jiang, Zhaohui
    Ning, Yan
    An, Bin
    Li, Ao
    Feng, Huanqing
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 2017 - 2020