3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries

被引:159
|
作者
Yang, Wu [1 ,2 ]
Yang, Wang [2 ]
Song, Ailing [2 ]
Sun, Gang [2 ]
Shao, Guangjie [1 ,2 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Coll Environm & Chem Engn, Hebei Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
LI-S BATTERIES; GEL POLYMER ELECTROLYTE; LONG CYCLE LIFE; COMPOSITES; CATHODE; SUPERCAPACITORS; CONDUCTIVITY; ARCHITECTURE; SEPARATOR; OXIDATION;
D O I
10.1039/c7nr06805k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon materials have attracted considerable attention as the hosts for lithium-sulfur batteries, especially the 3D structural carbon matrix. Herein, novel 3D interconnected porous carbon nanosheets/carbon nanotubes (denoted as PC/CNT) as a poly-sulfide reservoir are synthesized by a simple one-pot pyrolysis method. In the designed hybrid carbon matrix, porous carbon nanosheets exhibit hierarchical porous structures for high sulfur loading and effectively strengthen the physical confinement to trap soluble polysulfides, while carbon nanotubes provide a highly robust conductive pathway which can facilitate electron transport and maintain structural integrity. Moreover, the 3D interconnected structure combining 1D carbon nanotubes and 2D porous carbon nanosheets is beneficial for rapid electrical/ionic transport and favorable electrolyte infiltration. As a result, the S-PC/CNT composite exhibits outstanding electrochemical performance, with a high active-sulfur utilization, high specific capacity (1485.4, 1300.3 and 1138 mA h g(-1) at 0.5, 1 and 2 C, respectively), superior cycling stability (only 0.1% capacity decay per cycle over 400 cycles at 2 C) and excellent rate capability (the reversible capacity of 749 mA h g(-1) even at 4 C).
引用
收藏
页码:816 / 824
页数:9
相关论文
共 50 条
  • [1] 3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium-Sulfur Batteries
    Rehman, Sarish
    Gu, Xingxing
    Khan, Kishwar
    Mahmood, Nasir
    Yang, Wenlong
    Huang, Xiaoxiao
    Guo, Shaojun
    Hou, Yanglong
    ADVANCED ENERGY MATERIALS, 2016, 6 (12)
  • [2] "3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithium-Sulfur Batteries" (vol 6, 1502518, 2016)
    Rehman, Sarish
    Gu, Xingxing
    Khan, Kishwar
    Mahmood, Nasir
    Yang, Wenlong
    Huang, Xiaoxiao
    Guo, Shaojun
    Hou, Yanglong
    ADVANCED ENERGY MATERIALS, 2024,
  • [3] A 3D conductive network of porous carbon nanoparticles interconnected with carbon nanotubes as the sulfur host for long cycle life lithium-sulfur batteries
    Luo, Shiqiang
    Sun, Weiwei
    Ke, Jianhuang
    Wang, Yiqi
    Liu, Shuangke
    Hong, Xiaobin
    Li, Yujie
    Chen, Yufang
    Xie, Wei
    Zheng, Chunman
    NANOSCALE, 2018, 10 (47) : 22601 - 22611
  • [4] A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium-sulfur batteries
    Liu, Shuangke
    Xie, Kai
    Chen, Zhongxue
    Li, Yujie
    Hong, Xiaobin
    Xu, Jing
    Zhou, Liangjun
    Yuan, Junfei
    Zheng, Chunman
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (21) : 11395 - 11402
  • [5] Impeding polysulfide diffusion strategies in lithium-sulfur batteries using 3D porous carbon nanosheets integrated by cathode and functional separator
    Kim, Dae Kyom
    Moon, San
    Park, Jeong Jun
    Yoo, Youngjae
    Suk, Jungdon
    APPLIED SURFACE SCIENCE, 2024, 670
  • [6] Disordered mesoporous carbon as polysulfide reservoir for improved cyclic performance of lithium-sulfur batteries
    Park, Min-Sik
    Jeong, Bo Ock
    Kim, Tae Jeong
    Kim, Seok
    Kim, Ki Jae
    Yu, Ji-Sang
    Jung, Yongju
    Kim, Young-Jun
    CARBON, 2014, 68 : 265 - 272
  • [7] Cinnamon-Derived Hierarchically Porous Carbon as an Effective Lithium Polysulfide Reservoir in Lithium-Sulfur Batteries
    Thangavel, Ranjith
    Kannan, Aravindaraj G.
    Ponraj, Rubha
    Kaliyappan, Karthikeyan
    Yoon, Won-Sub
    Kim, Dong-Won
    Lee, Yun-Sung
    NANOMATERIALS, 2020, 10 (06) : 1 - 11
  • [8] Graphene/Carbon Nanotubes Composite as a Polysulfide Trap for Lithium-Sulfur Batteries
    Gao, Feng
    Yan, Xinxiu
    Wei, Zhikai
    Qu, Meizhen
    Fan, Weifeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (04): : 3301 - 3314
  • [9] 3D Interconnected Porous Carbon Aerogels as Sulfur Immobilizers for Sulfur Impregnation for Lithium-Sulfur Batteries with High Rate Capability and Cycling Stability
    Zhang, Zhiwei
    Li, Zhaoqiang
    Hao, Fengbin
    Wang, Xuekun
    Li, Qun
    Qi, Yongxin
    Fan, Runhua
    Yin, Longwei
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (17) : 2500 - 2509
  • [10] 3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries
    Bao, Weizhai
    Su, Dawei
    Zhang, Wenxue
    Guo, Xin
    Wang, Guoxiu
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (47) : 8746 - 8756