Polymer-Inorganic Crystalline Nanocomposite Materials via Nanoparticle Occlusion

被引:14
|
作者
Ning, Yin [1 ,2 ]
Armes, Steven P. [3 ]
Li, Dan [1 ,2 ]
机构
[1] Jinan Univ, Guangdong Prov Key Lab Funct Supramol Coordinat M, Guangzhou 510632, Peoples R China
[2] Jinan Univ, Coll Chem & Mat Sci, Guangzhou 510632, Peoples R China
[3] Univ Sheffield, Dept Chem, Brook Hill, Sheffield S3 7HF, S Yorkshire, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
diblock copolymers; nanocomposites; nanoparticle occlusion; polymer-inorganic crystalline nanocomposites; polymerization-induced self-assembly; DIBLOCK COPOLYMER NANOPARTICLES; CALCITE SINGLE-CRYSTALS; EFFICIENT OCCLUSION; ZINC-OXIDE; NANO-OBJECTS; SURFACE; MICROSPHERES; VESICLES; REVEALS; GROWTH;
D O I
10.1002/marc.202100793
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Efficient occlusion of guest nanoparticles into host single crystals opens up a straightforward and versatile way to construct functional crystalline nanocomposites. This new technique has attracted increasing research interest because it enables the composition, structure, and properties of the resulting nanocomposites to be well-controlled. This review aims to provide a comprehensive summary of nanoparticle occlusion within inorganic crystals. First, recently-developed strategies for the occlusion of various colloidal particles (e.g., diblock copolymer nanoparticles, polymer-modified inorganic nanoparticles, oil droplets, etc.) within host crystals (e.g., CaCO3, ZnO, or ZIF-8) are summarized. Second, new results pertaining to spatially-controlled occlusion and the physical mechanism of nanoparticle occlusion are briefly discussed. Finally, the physicochemical properties and potential applications of various functional nanocomposite crystals constructed via nanoparticle occlusion are highlighted and the perspective on the likely future for this research topic is also offered.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Research progress on polymer-inorganic thermoelectric nanocomposite materials
    Du, Yong
    Shen, Shirley Z.
    Cai, Kefeng
    Casey, Philip S.
    PROGRESS IN POLYMER SCIENCE, 2012, 37 (06) : 820 - 841
  • [2] Organic optoelectronics based on polymer-inorganic nanoparticle composite materials
    Aleshin, A. N.
    PHYSICS-USPEKHI, 2013, 56 (06) : 627 - 632
  • [3] Polymer-inorganic nanocomposite membranes for gas separation
    Cong, Hailin
    Radosz, Maciej
    Towler, Brian Francis
    Shen, Youqing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2007, 55 (03) : 281 - 291
  • [4] POLYMER-INORGANIC MATERIALS ON THE BASIS OF TETRAETHOXYSILANE
    Yevchuk, I. Yu
    Demchyna, O. I.
    Kochubey, V. V.
    Romaniuk, H. V.
    Koval', Z. M.
    Zaikov, G. E.
    Medvedevskikh, Yu G.
    OXIDATION COMMUNICATIONS, 2013, 36 (03): : 801 - 810
  • [5] Bioinspired polymer-inorganic hybrid materials
    Ludwigs, Sabine
    Steiner, Ullrich
    Kulak, Alex N.
    Lam, Ray
    Meldrum, Fiona C.
    ADVANCED MATERIALS, 2006, 18 (17) : 2270 - +
  • [6] Bio-inspired synthesis of polymer-inorganic nanocomposite materials in mild aqueous systems
    Sugawara-Narutaki, Ayae
    POLYMER JOURNAL, 2013, 45 (03) : 269 - 276
  • [7] Tunable release of proteins with polymer-inorganic nanocomposite microspheres
    Pitukmanorom, Pemakorn
    Yong, Tseh-Hwan
    Ying, Jackie Y.
    ADVANCED MATERIALS, 2008, 20 (18) : 3504 - +
  • [8] Electrospun Polymer-Inorganic Nanostructured Materials and Their Applications
    Homocianu, Mihaela
    Pascariu, Petronela
    POLYMER REVIEWS, 2020, 60 (03) : 493 - 541
  • [9] Hybrid polymer-inorganic materials: multiscale hierarchy
    Xu, SQ
    Zhang, JG
    Kumacheva, E
    COMPOSITE INTERFACES, 2003, 10 (4-5) : 405 - 421
  • [10] SYNTHESIS OF NANOCOMPOSITE MATERIALS VIA INORGANIC POLYMER GELS
    GONSALVES, KE
    XIAO, TSD
    CHOW, GM
    INORGANIC AND ORGANOMETALLIC POLYMERS II: ADVANCED MATERIALS AND INTERMEDIATES, 1994, 572 : 195 - 206