A semi-discrete scheme for solving nonlinear hyperbolic-type partial integro-differential equations using radial basis functions

被引:2
|
作者
Avazzadeh, Z. [1 ]
Rizi, Z. Beygi [2 ]
Ghaini, F. M. Maalek [1 ]
Loghmani, G. B. [1 ]
机构
[1] Yazd Univ, Dept Math, Yazd, Iran
[2] Islamic Azad Univ, Mobarakeh Branch, Dept Math, Esfahan, Iran
关键词
BASIS FUNCTION INTERPOLATION; FINITE-ELEMENT METHODS; MULTIVARIATE INTERPOLATION; NUMERICAL-SOLUTION; SCATTERED DATA; COLLOCATION; SYSTEM;
D O I
10.1063/1.3601847
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose an effective numerical method for solving nonlinear Volterra partial integro-differential equations. These equations include the partial differentiations of an unknown function and the integral term containing the unknown function as the "memory" of system. Radial basis functions and finite difference method as the main techniques play the important role to reduce a nonlinear partial integro-differential equation to a linear system of equations. Some examples are demonstrated to describe the method. Numerical results confirm the validity and efficiency of the presented method. (C) 2011 American Institute of Physics. [doi:10.1063/1.3601847]
引用
收藏
页数:15
相关论文
共 50 条
  • [1] SMOOTH SOLUTION OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS USING RADIAL BASIS FUNCTIONS
    Avazzadeh, Z.
    Heydari, Mohammad
    Chen, Wen
    Loghmani, G. B.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2014, 4 (02): : 115 - 127
  • [2] A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions
    Avazzadeh, Z.
    Rizi, Z. Beygi
    Ghaini, F. M. Maalek
    Loghmani, G. B.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (05) : 881 - 893
  • [3] Gaussian-Radial Basis Functions for Solving Fractional Parabolic Partial Integro-Differential Equations
    Maybodi, F. S. Aghaei
    Heydari, M. H.
    Ghaini, F. M. Maalek
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (02)
  • [4] On nonlinear integro-differential equations of hyperbolic type
    Dezern, D. H.
    Adeyeye, J. O.
    Pandit, S. G.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1802 - E1806
  • [5] A semi-discrete scheme for solving fourth-order partial integro-differential equation with a weakly singular kernel using Legendre wavelets method
    Xiaoyong Xu
    Da Xu
    Computational and Applied Mathematics, 2018, 37 : 4145 - 4168
  • [6] A semi-discrete scheme for solving fourth-order partial integro-differential equation with a weakly singular kernel using Legendre wavelets method
    Xu, Xiaoyong
    Xu, Da
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4145 - 4168
  • [7] Method of Radial Basis Functions for Solving the Partial Integro-Differential Equation of Diffusion with Nonlocal Effects
    Borachok, I.
    Palianytsia, O.
    Chapko, R.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2024, 60 (04) : 621 - 632
  • [8] An Efficient Alternative Kernel of Gaussian Radial Basis Function for Solving Nonlinear Integro-Differential Equations
    Farshadmoghadam, Farnaz
    Azodi, Haman Deilami
    Yaghouti, Mohammad Reza
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (03): : 869 - 881
  • [9] An Efficient Alternative Kernel of Gaussian Radial Basis Function for Solving Nonlinear Integro-Differential Equations
    Farnaz Farshadmoghadam
    Haman Deilami Azodi
    Mohammad Reza Yaghouti
    Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 : 869 - 881
  • [10] A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations
    Jafari, H.
    Tuan, N. A.
    Ganji, R. M.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (01)