Recursive partitioning for tumor classification with gene expression microarray data

被引:149
|
作者
Zhang, HP [1 ]
Yu, CY
Singer, B
Xiong, MM
机构
[1] Yale Univ, Sch Med, Dept Epidemiol & Publ Hlth, New Haven, CT 06520 USA
[2] Princeton Univ, Off Populat Res, Princeton, NJ 08544 USA
[3] Univ Texas, Hlth Sci Ctr, Ctr Human Genet, Houston, TX 77225 USA
关键词
D O I
10.1073/pnas.111153698
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise classification of tumors is critically important for cancer diagnosis and treatment. It is also a scientifically challenging task. Recently, efforts have been made to use gene expression profiles to improve the precision of classification, with limited success. Using a published data set for purposes of comparison, we introduce a methodology based on classification trees and demonstrate that it is significantly more accurate for discriminating among distinct colon cancer tissues than other statistical approaches used heretofore. In addition, competing classification trees are displayed, which suggest that different genes may coregulate colon cancers.
引用
收藏
页码:6730 / 6735
页数:6
相关论文
共 50 条
  • [1] Mapping microarray gene expression data into dissimilarity spaces for tumor classification
    Garcia, Vicente
    Sanchez, J. Salvador
    [J]. INFORMATION SCIENCES, 2015, 294 : 362 - 375
  • [2] Optimization Based Tumor Classification from Microarray Gene Expression Data
    Dagliyan, Onur
    Uney-Yuksektepe, Fadime
    Kavakli, I. Halil
    Turkay, Metin
    [J]. PLOS ONE, 2011, 6 (02):
  • [3] Gene selection for tumor classification using microarray gone expression data
    Yendrapalli, K.
    Basnet, R.
    Mukkamala, S.
    Sung, A. H.
    [J]. WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 290 - +
  • [4] Tumor classification by partial least squares using microarray gene expression data
    Nguyen, DV
    Rocke, DM
    [J]. BIOINFORMATICS, 2002, 18 (01) : 39 - 50
  • [5] Recursive ECOC for microarray data classification
    Tapia, E
    Serra, E
    González, JC
    [J]. MULTIPLE CLASSIFIER SYSTEMS, 2005, 3541 : 108 - 117
  • [6] On the classification of microarray gene-expression data
    Basford, Kaye E.
    McLachlan, Geoffrey J.
    Rathnayake, Suren I.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2013, 14 (04) : 402 - 410
  • [7] Classification of Microarray Gene Expression Data using Associative Classification
    Alagukumar, S.
    Lawrance, R.
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,
  • [8] Classification of normal and tumor tissues using geometric representation of gene expression microarray data
    Kim, Saejoon
    Shin, Donghyuk
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4617 : 393 - +
  • [9] Identification of discrete chromosomal deletion by binary recursive partitioning of microarray differential expression data
    Zhou, X
    Cole, SW
    Rao, NP
    Cheng, Z
    Li, Y
    McBride, J
    Wong, DTW
    [J]. JOURNAL OF MEDICAL GENETICS, 2005, 42 (05) : 416 - 419
  • [10] A STUDY ON GENE SELECTION AND CLASSIFICATION ALGORITHMS FOR CLASSIFICATION OF MICROARRAY GENE EXPRESSION DATA
    Chin, Yeo Lee
    Deris, Safaai
    [J]. JURNAL TEKNOLOGI, 2005, 43