Hierarchical accumulation network with grid attention for image super-resolution

被引:10
|
作者
Yang, Yue [1 ]
Qi, Yong [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China
关键词
Image super-resolution; Grouping; Attention mechanism; Accumulation network;
D O I
10.1016/j.knosys.2021.107520
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep convolutional neural networks (CNNs) have recently shown promising results in single image super-resolution (SISR) due to their powerful representation ability. However, existing CNN-based SR methods mainly focus on deeper architecture design to obtain high-level semantic information, neglecting the features of intermediate layers containing fine-grained texture information and thus limiting the capacity for producing precise high-resolution images. To tackle this issue, we propose a hierarchical accumulation network (HAN) with grid attention in this paper. Specifically, a hierarchical feature accumulation (HFA) structure is proposed to accumulate outputs of intermediate layers in a grouping manner for exploiting the features of different semantic levels. Moreover, we introduce a multi-scale grid attention module (MGAM) to refine features of the same level. The MGAM employs a pyramid sampling with self-attention mechanism to efficiently model the non-local dependencies between pixel features and produces refined representations. By this means, the universal features in connection with spatial similarity and semantic levels are produced for image SR. Experimental results on five benchmark datasets with different degradation models demonstrate the superiority of our HAN in terms of quantitative metrics and visual quality. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Attention hierarchical network for super-resolution
    Song, Zhaoyang
    Zhao, Xiaoqiang
    Hui, Yongyong
    Jiang, Hongmei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (30) : 46351 - 46369
  • [2] Attention hierarchical network for super-resolution
    Zhaoyang Song
    Xiaoqiang Zhao
    Yongyong Hui
    Hongmei Jiang
    Multimedia Tools and Applications, 2023, 82 : 46351 - 46369
  • [3] Single Image Super-Resolution Using Deep Hierarchical Attention Network
    Zhao, Fei
    Chen, Rui
    Li, Yuan
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2020), 2020, : 80 - 85
  • [4] Adaptive Attention Network for Image Super-resolution
    Chen Y.-M.
    Zhou D.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (08): : 1950 - 1960
  • [5] Hierarchical Back Projection Network for Image Super-Resolution
    Liu, Zhi-Song
    Wang, Li-Wen
    Li, Chu-Tak
    Siu, Wan-Chi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 2041 - 2050
  • [6] Hierarchical dense recursive network for image super-resolution
    Jiang, Kui
    Wang, Zhongyuan
    Yi, Peng
    Jiang, Junjun
    PATTERN RECOGNITION, 2020, 107
  • [7] Context Reasoning Attention Network for Image Super-Resolution
    Zhang, Yulun
    Wei, Donglai
    Qin, Can
    Wang, Huan
    Pfister, Hanspeter
    Fu, Yun
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4258 - 4267
  • [8] Residual shuffle attention network for image super-resolution
    Li, Xuanyi
    Shao, Zhuhong
    Li, Bicao
    Shang, Yuanyuan
    Wu, Jiasong
    Duan, Yuping
    MACHINE VISION AND APPLICATIONS, 2023, 34 (05)
  • [9] Attention mechanism feedback network for image super-resolution
    Chen, Xiao
    Jing, Ruyun
    Suna, Chaowen
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [10] Pyramid Attention Dense Network for Image Super-Resolution
    Chen, Si-Bao
    Hu, Chao
    Luo, Bin
    Ding, Chris H. Q.
    Huang, Shi-Lei
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,