An Object-Based Hierarchical Compound Classification Method for Change Detection in Heterogeneous Optical and SAR Images

被引:56
|
作者
Wan, Ling [1 ,2 ,3 ]
Xiang, Yuming [1 ,2 ,3 ]
You, Hongjian [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100039, Peoples R China
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Heterogeneous remote sensing images; hierarchical compound classification (HCC); multi-scale and multitemporal segmentation; region-based Markov random field (MRF) model; LAND-COVER TRANSITIONS; REMOTE-SENSING DATA; MODEL; MULTIRESOLUTION; SEGMENTATION; FRAMEWORK; ALIGNMENT; TOOL;
D O I
10.1109/TGRS.2019.2930322
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Change detection in heterogeneous remote sensing images is an important but challenging task because of the incommensurable appearances of the heterogeneous images. In order to solve the change detection problem in optical and synthetic aperture radar (SAR) images, this paper proposes an improved method that combines cooperative multitemporal segmentation and hierarchical compound classification (CMS-HCC) based on our previous work. Considering the large radiometric and geometric differences between heterogeneous images, first, a cooperative multitemporal segmentation method is introduced to generate multi-scale segmentation results. This method segments two images together by associating the information from the two images and thus reduces the noises and errors caused by area transition and object misalignment, as well as makes the boundaries of detected objects described more accurately. Then, a region-based multitemporal hierarchical Markov random field (RMH-MRF) model is defined to combine spatial, temporal, and multi-level information. With the RMH-MRF model, a hierarchical compound classification method is performed by identifying the optimal configuration of labels with a region-based marginal posterior mode estimation, further improving the change detection accuracy. The changes can be determined if the labels assigned to each pair of parcels are different, obtaining multi-scale change maps. Experimental validation is conducted on several pairs of optical and SAR images. It consists of two parts: comparison on different multitemporal segmentation methods and comparison on different change detection methods. The results show that the proposed method can effectively detect the changes in heterogeneous images, with low false positive and high accuracy.
引用
下载
收藏
页码:9941 / 9959
页数:19
相关论文
共 50 条
  • [1] Object-based method for optical and SAR images change detection
    Wan, Ling
    Zhang, Tao
    You, Hongjian
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7410 - 7414
  • [2] SAR IMAGE CHANGE DETECTION BASED ON OBJECT-BASED METHOD
    Ye, Xi
    Zhang, Hong
    Wang, Hao
    Zhang, Bo
    Wu, Fan
    Tang, Yixian
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2083 - 2086
  • [3] An Object-Based Hierarchical Method for Change Detection Using Unmanned Aerial Vehicle Images
    Qin, Rongjun
    REMOTE SENSING, 2014, 6 (09) : 7911 - 7932
  • [4] Object-based multiscale method for SAR image change detection
    Wan, Ling
    Zhang, Tao
    You, Hongjian
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02)
  • [6] Object-Based Urban Change Detection Using High Resolution SAR Images
    Yousif, Osama
    Ban, Yifang
    2015 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2015,
  • [7] An Object-Based Method Based on a Novel Statistical Distance for SAR Image Change Detection
    Wan, Ling
    Zhang, Tao
    You, Hongjian
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2018, : 172 - 176
  • [8] OBJECT-BASED CHANGE DETECTION FOR INDIVIDUAL BUILDINGS IN SAR IMAGES CAPTURED WITH DIFFERENT INCIDENCE ANGLES
    Tao, Junyi
    Auer, Stefan
    Reinartz, Peter
    Bamler, Richard
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1238 - 1241
  • [9] OBJECT-BASED CLASSIFICATION AND CHANGE DETECTION OF HOKKAIDO, JAPAN
    Park, J. G.
    Harada, I.
    Kwak, Y.
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 1003 - 1007
  • [10] Classification of change detection algorithms for object-based applications
    Cavallaro, A
    Ebrahimi, T
    DIGITAL MEDIA: PROCESSING MULTIMEDIA INTERACTIVE SERVICES, 2003, : 129 - 136