Radiotherapy Induced Xerostomia Prediction Through Cluster Models Incorporating 3D Spatial Dose Within the Parotid Gland and Machine Learning Techniques

被引:0
|
作者
Chao, M. [1 ]
El Naqa, I. [2 ]
Bakst, R. [1 ]
Lo, Y. [1 ]
Penagaricano, J. [2 ]
机构
[1] Mt Sinai Med Ctr, New York, NY 10029 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
MO-C930-Ie
引用
收藏
页码:E267 / E267
页数:1
相关论文
共 20 条
  • [1] Cluster model incorporating heterogeneous dose distribution of partial parotid irradiation for radiotherapy induced xerostomia prediction with machine learning methods
    Chao, Ming
    El Naqa, Issam
    Bakst, Richard L.
    Lo, Yeh-Chi
    Penagaricano, Jose A.
    ACTA ONCOLOGICA, 2022, 61 (07) : 842 - 848
  • [2] Percolation Based Cluster Models Fully Incorporating Spatial Dose Distribution in Assessment of Parotid Gland Radiation Induced Complication in Head and Neck Cancer Treatment
    Chao, M.
    Wei, J.
    Lo, Y. C.
    Penagaricano, J. A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : S169 - S170
  • [3] Parotid gland tumors: A comparison of postoperative radiotherapy techniques using three dimensional (3D) dose distributions and dose-volume histograms (DVHS)
    Yaparpalvi, R
    Fontenla, DP
    Tyerech, SK
    Boselli, LR
    Beitler, JJ
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 40 (01): : 43 - 49
  • [4] IMPROVED DOSE PREDICTION FOR BREAST RADIOTHERAPY USING NOVEL ANATOMICAL MASK INPUTS FOR 3D DEEP LEARNING MODELS
    Moore, Lance
    Nematollahi, Fatemeh
    Meyers, Sandra
    Moore, Kevin
    Kisling, Kelly
    RADIOTHERAPY AND ONCOLOGY, 2023, 186 : S49 - S49
  • [5] An automated 3D modeling pipeline for constructing 3D models of MONOGENEAN HARDPART using machine learning techniques
    Bee Guan Teo
    Sarinder Kaur Dhillon
    BMC Bioinformatics, 20
  • [6] An automated 3D modeling pipeline for constructing 3D models of MONOGENEAN HARDPART using machine learning techniques
    Teo, Bae Guan
    Dhillon, Sarinder Kaur
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [7] Indirect prediction of the 3D printability of polysaccharide gels using multiple machine learning (ML) models
    Tang, Tiantian
    Zhang, Min
    Adhikari, Benu
    Li, Chunli
    Lin, Jiacong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 280
  • [8] Architectural space classification considering topological and 3D visual spatial relations using machine learning techniques
    Yildiz, Berfin
    Cagdas, Guelen
    Zincir, Ibrahim
    BUILDING RESEARCH AND INFORMATION, 2024, 52 (1-2): : 68 - 86
  • [9] A 3D DYNAMICAL HYBRID MODEL: COUPLING STATISTICAL AND MACHINE LEARNING TECHNIQUES TO SAR TIME SERIES PREDICTION
    Guerra, Renata Rojas
    Bayer, Fabio M.
    Gamba, Paolo
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 8342 - 8345
  • [10] Development of machine learning models for material classification and prediction of mechanical properties of FDM 3D printing outputs
    Su-Hyun Kim
    Ji-Hye Park
    Ji-Young Park
    Seung-Gwon Kim
    Young-Jun Lee
    Joo-Hyung Kim
    Journal of Mechanical Science and Technology, 2025, 39 (2) : 541 - 552