Counting singular matrices with primitive row vectors

被引:2
|
作者
Wigman, I [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 144卷 / 01期
关键词
singular matrices; primitive vectors; lattices; equidistribution theorem; asymptotics;
D O I
10.1007/s00605-004-0250-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve an asymptotic problem in the geometry of numbers. where we count the number of singular it n x n matrices where row vectors are primitive and of length at most T. without the constraint of primitivity, the problem was solved by Y. Katznelson. We show that as T -->infinity. the number is asymptotic to (n-1)u(n)/zeta(n)zeta(n-1)(n) Tn2-n log (T) for n greater than or equal to 3. The 3-dimensional case is the most problematic and we need to invoke an equidistribution theorem due to W M. Schmidt.
引用
收藏
页码:71 / 84
页数:14
相关论文
共 50 条