Interpolation inequalities between Sobolev and Morrey-Campanato spaces: A common gateway to concentration-compactness and Gagliardo-Nirenberg interpolation inequalities

被引:16
|
作者
Van Schaftingen, Jean [1 ]
机构
[1] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain La Neuve, Belgium
关键词
Sobolev space; Morrey space; Campanato space; interpolation inequality; functions of bounded mean oscillation; Holder continuous functions; Zygmund class; higherorder derivative; fractional Sobolev space; Besov space; improved Sobolev embedding; concentration-compactness; ELLIPTIC-EQUATIONS;
D O I
10.4171/PM/1947
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove interpolation estimates between Morrey-Campanato spaces and Sobolev spaces. These estimates give in particular concentration-compactness inequalities in the translation-invariant and in the translation- and dilation-invariant case. They also give in particular interpolation estimates between Sobolev spaces and functions of bounded mean oscillation. The proofs rely on Sobolev integral representation formulae and maximal function theory. Fractional Sobolev spaces are also covered.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 16 条