Uniqueness for a class of singular quasilinear Dirichlet problem

被引:4
|
作者
Chu, K. D. [1 ]
Hai, D. D. [2 ]
Shivaji, R. [3 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[3] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
关键词
Singular p-Laplacian; Uniqueness; Positive solutions; NONLINEAR ELLIPTIC-EQUATIONS; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; PARAMETER; NUMBER;
D O I
10.1016/j.aml.2020.106306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove uniqueness of positive solutions for the problem -Delta(p)u = lambda f(u)/u(alpha) in Omega, u = 0 on partial derivative Omega where p > 1+ alpha, alpha is an element of (0, 1), Omega is bounded domain in R(n )with smooth boundary partial derivative Omega f [0, infinity) -> (0, infinity) is nondecreasing with f(z)/z(alpha) decreasing for z large, and lambda is a large parameter. (C) 2020 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页数:6
相关论文
共 50 条