Mutual information based input selection in neuro-fuzzy modeling for short term load forecasting of Iran national power system

被引:0
|
作者
Vahabie, A. H. [1 ]
Yousefi, M. M. Rezaei [1 ]
Araabi, B. N. [1 ]
Lucas, C. [1 ]
Barghinia, S. [2 ]
Ansarimehr, P. [2 ]
机构
[1] Univ Tehran, Sch Elect & Comp Eng, Control & Intelligent Proc Ctr Excellence, Tehran, Iran
[2] NRI, Dept Power Syst Studies, Tehran, Iran
关键词
short term load forecasting; input selection; mutual information; neuro-fuzzy modeling; LoLiMoT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the important requirements for operational planning of electrical utilities is the prediction of hourly load up to several days, known as short term load forecasting (STLF). Considering the effect of its accuracy on system security and also economical aspects, there is an on-going attention toward putting new approaches to the task. Recently, Neuro-Fuzzy modeling has played successful role in various applications over nonlinear time series prediction. In modeling, irrelevant inputs cause the deterioration of performance. Therefore, to have an accurate model, some strategies are needed to choose a set of most relevant inputs. Mutual information (MI) is very effective in evaluating the relevance of each input from the aspect of information theory. This paper presents neuro-fuzzy model with locally linear model tree (LoLiMoT) learning algorithm for the STLF of Iran national power system (INPS). Proper inputs which consider historical data of INPS are selected by MI.
引用
收藏
页码:1819 / +
页数:3
相关论文
共 50 条
  • [1] A new neuro-based method for short term load forecasting of Iran national power system
    Barzamini, R
    Menhaj, MB
    Kamalvand, S
    Fasihi, MA
    Adaptive and Natural Computing Algorithms, 2005, : 373 - 376
  • [2] Short-term load forecasting by a neuro-fuzzy based approach
    Liang, RH
    Cheng, CC
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2002, 24 (02) : 103 - 111
  • [3] Neuro-fuzzy approaches to short-term electrical load forecasting
    Bartkiewicz, W
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 229 - 234
  • [4] Modified Neural and Neuro-fuzzy Approach for Short Term Load Forecasting
    Chaturvedi, D. K.
    Premdayal, Sinha Anand
    2012 2ND INTERNATIONAL CONFERENCE ON POWER, CONTROL AND EMBEDDED SYSTEMS (ICPCES 2012), 2012,
  • [5] Multilayer neuro-fuzzy network for short term electric load forecasting
    Bodyanskiy, Yevgeniy
    Popov, Sergiy
    Rybalchenko, Taras
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2008, 5010 : 339 - 348
  • [6] Input variables selection using mutual information for neuro fuzzy modeling with the application to time series forecasting
    Yousefi, M. M. Rezaei
    Mirmomeni, M.
    Lucas, C.
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1121 - 1126
  • [7] An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting
    Kazemi, S. M. R.
    Hoseini, Mir Meisam Seied
    Abbasian-Naghneh, S.
    Rahmati, Seyed Habib A.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2014, 21 (02) : 311 - 326
  • [8] Prediction Intervals for Short-Term Load Forecasting Neuro-Fuzzy Models
    Bartkiewicz, Witold
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (10B): : 284 - 287
  • [9] Short term load forecasting for Iran national power system using artificial neural network and fuzzy expert system
    Ansarimehr, P
    Barghinia, S
    Habibi, H
    Vafadar, N
    POWERCON 2002: INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY, VOLS 1-4, PROCEEDINGS, 2002, : 1082 - 1085
  • [10] Short-Term PV Power Forecasting Using Adaptive Neuro-Fuzzy Inference System
    Yadav, Harendra Kumar
    Pal, Yash
    Tripathi, M. M.
    2018 IEEE 8TH POWER INDIA INTERNATIONAL CONFERENCE (PIICON), 2018,