GENERAL POSITION PROBLEM OF HEXAGONAL DERIVED NETWORKS

被引:0
|
作者
Prabha, R. [1 ]
Devi, S. Renukaa [2 ,3 ]
机构
[1] Ethiraj Coll Women, Dept Math, Chennai, Tamil Nadu, India
[2] Univ Madras Chennai, Chennai, Tamil Nadu, India
[3] Avichi Coll Arts & Sci, Dept Math, Chennai, Tamil Nadu, India
来源
关键词
General position set; gp-number; hexagonal network; silicate network; oxide network;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, the general position problem aims to obtain a general position set S of maximum number of vertices in G, in which no three vertices lie on a same geodesic in G. Such a general position set is referred to as a gp-set of G. The gp-number of G, gp(G) denotes the cardinality of a gp-set S in G. In this paper, we solve the general position problem of hexagonal derived networks such as hexagonal, honeycomb, silicate and oxide networks and compute their general position numbers i.e., gp(G).
引用
收藏
页码:145 / 154
页数:10
相关论文
共 50 条
  • [1] The Graph Theory General Position Problem on Some Interconnection Networks
    Manuel, Paul
    Klavzar, Sandi
    FUNDAMENTA INFORMATICAE, 2018, 163 (04) : 339 - 350
  • [2] The Edge General Position Problem
    Paul Manuel
    R. Prabha
    Sandi Klavžar
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2997 - 3009
  • [3] The Edge General Position Problem
    Manuel, Paul
    Prabha, R.
    Klavzar, Sandi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 2997 - 3009
  • [4] ON THE GENERAL POSITION SUBSET SELECTION PROBLEM
    Payne, Michael S.
    Wood, David R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1727 - 1733
  • [5] A GENERAL POSITION PROBLEM IN GRAPH THEORY
    Manuel, Paul
    Klavzar, Sandi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (02) : 177 - 187
  • [6] On the general position problem on Kneser graphs
    Patkos, Balazs
    ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (02) : 273 - 280
  • [7] IRS POSITION ON CORPORATE GENERAL PARTNER PROBLEM
    不详
    JOURNAL OF TAXATION, 1971, 35 (01): : 64 - 64
  • [8] A Steiner general position problem in graph theory
    Sandi Klavžar
    Dorota Kuziak
    Iztok Peterin
    Ismael G. Yero
    Computational and Applied Mathematics, 2021, 40
  • [9] The general position problem and strong resolving graphs
    Klavzar, Sandi
    Yero, Ismael G.
    OPEN MATHEMATICS, 2019, 17 : 1126 - 1135
  • [10] A Steiner general position problem in graph theory
    Klavzar, Sandi
    Kuziak, Dorota
    Peterin, Iztok
    Yero, Ismael G.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (06):