The Maximax Minimax Quotient Theorem

被引:3
|
作者
Bouvier, Jean-Baptiste [1 ]
Ornik, Melkior [1 ,2 ]
机构
[1] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL USA
关键词
Optimization; Fractional programming; Max-min programming; Polytopes;
D O I
10.1007/s10957-022-02008-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an optimization problem emerging from optimal control theory and situated at the intersection of fractional programming and linear max-min programming on polytopes. A naive solution would require solving four nested, possibly nonlinear, optimization problems. Instead, relying on numerous geometric arguments we determine an analytical solution to this problem. In the course of proving our main theorem, we also establish another optimization result stating that the minimum of a specific minimax optimization is located at a vertex of the constraint set.
引用
收藏
页码:1084 / 1101
页数:18
相关论文
共 50 条
  • [1] The Maximax Minimax Quotient Theorem
    Jean-Baptiste Bouvier
    Melkior Ornik
    Journal of Optimization Theory and Applications, 2022, 192 : 1084 - 1101
  • [2] Maximax and minimax rearrangement optimization problems
    Emamizadeh, B.
    Prajapat, J. V.
    OPTIMIZATION LETTERS, 2011, 5 (04) : 647 - 664
  • [3] Maximax and minimax rearrangement optimization problems
    B. Emamizadeh
    J. V. Prajapat
    Optimization Letters, 2011, 5 : 647 - 664
  • [4] MINIMAX-MAXIMAX SOLUTION TO LINEAR-PROGRAMMING UNDER RISK
    VANMOESEKE, P
    ECONOMETRICA, 1963, 31 (04) : 749 - 750
  • [5] A minimax theorem
    Ha, CW
    ACTA MATHEMATICA HUNGARICA, 2003, 101 (1-2) : 149 - 154
  • [6] On a minimax theorem
    J. Saint Raymond
    Archiv der Mathematik, 2000, 74 : 432 - 437
  • [7] A MINIMAX THEOREM
    BORENSHTEIN, OY
    SHULMAN, VS
    MATHEMATICAL NOTES, 1991, 50 (1-2) : 752 - 754
  • [8] A MINIMAX THEOREM
    MCLINDEN, L
    MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (04) : 576 - 591
  • [9] On a minimax theorem
    Saint Raymond, J
    ARCHIV DER MATHEMATIK, 2000, 74 (06) : 432 - 437
  • [10] A minimax theorem
    C.-W. Ha
    Acta Mathematica Hungarica, 2003, 101 : 149 - 154