Thickness regulation of graphitic carbon nitride and its influence on the photocatalytic performance towards CO2 reduction

被引:27
|
作者
Song, Xianghai [1 ]
Wang, Mei [2 ]
Liu, Wentao [3 ]
Li, Xin [1 ]
Zhu, Zhi [1 ]
Huo, Pengwei [1 ]
Yan, Yongsheng [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Inst Green Chem & Chem Technol, Adv Chem Engn Lab Green Mat & Energy Jiangsu Prov, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Agr Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Liaoning Normal Univ, Sch Chem & Chem Engn, Dalian 116029, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Carbon nitride; Thickness regulation; Photocatalysis; CO2; reduction; EFFICIENT; G-C3N4; ENHANCEMENT; DEGRADATION; CONVERSION; NANOSHEETS; NANOTUBES; CATALYST;
D O I
10.1016/j.apsusc.2021.151810
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphitic carbon nitride (g-C3N4) has been widely investigated in photocatalysis due to its excellent semiconductor properties. Though various strategies have been used to optimize the catalytic activity of g-C3N4, the influence of thickness itself on the photoelectric properties and CO2 reduction activity of g-C3N4 is still unclear. In this work, g-C3N4 with various thickness were successfully prepared by high-temperature exfoliation, and applied for the photoreduction of CO2. It was found that the conduction band (CB) of g-C3N4 samples shifted to negative position with decreasing thickness due to quantum confinement effect. Meanwhile, the more negative CB position endowed g-C3N4 with higher reduction potential that favors the reduction of CO2. Moreover, the specific surface area remarkably increased with higher exfoliation degree accompanied by more exposed active sites. The thinner g-C3N4 thickness also led to the exposure of ample edge amino groups that are beneficial for CO2 adsorption. Furthermore, the high-temperature exfoliation were also benefit for optimizing the crystal structure of g-C3N4 and reducing defect structures, which significantly inhibits the recombination of electronhole pairs and facilitates the migration of charge carriers. These merits of g-C3N4 with high exfoliation degree synergistically catalyze the photoreduction of CO2 with high efficiency.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Enhanced Photocatalytic CO2 Reduction by Amine Functionalization of Graphitic Carbon Nitride
    Lachance, Robert
    Adeli, Babak
    Taghipour, Fariborz
    SOLAR RRL, 2024, 8 (07)
  • [2] Targeted regulation of exciton dissociation in graphitic carbon nitride by vacancy modification for efficient photocatalytic CO2 reduction
    Li, Fang
    Yue, Xiaoyang
    Zhang, Dainan
    Fan, Jiajie
    Xiang, Quanjun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 292
  • [3] Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride
    Sun, Zhuxing
    Fischer, Julia Melisande Theresa Agatha
    Li, Qian
    Hu, Jing
    Tang, Qijun
    Wang, Haiqiang
    Wu, Zhongbiao
    Hankel, Marlies
    Searles, Debra J.
    Wang, Lianzhou
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 216 : 146 - 155
  • [4] Carbon-vacancy modified graphitic carbon nitride: enhanced CO2 photocatalytic reduction performance and mechanism probing
    Shen, Meng
    Zhang, Lingxia
    Wang, Min
    Tian, Jianjian
    Jin, Xixiong
    Guo, Limin
    Wang, Lianzhou
    Shi, Jianlin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (04) : 1556 - 1563
  • [5] Synergetic regulation of electronic structure of graphitic carbon nitride through phosphorus and carbon co-doping for enhanced photocatalytic CO2 reduction
    Huang, Qi-Su
    Li, Qiuju
    Chu, Chengcheng
    Liu, Qiong
    Li, Zhuo
    Mao, Shun
    CHEMICAL ENGINEERING JOURNAL, 2024, 482
  • [6] Photochemical Reduction of CO2 by Graphitic Carbon Nitride Polymers
    Lin, Jinliang
    Pan, Zhiming
    Wang, Xinchen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (03): : 353 - 358
  • [7] Review of Graphitic Carbon Nitride and Its Composite Catalysts for Selective Reduction of CO2
    Bhowmik, Soumalya
    Phukan, Shankab J.
    Sah, Neeraj K.
    Roy, Manas
    Garai, Somenath
    Iyer, Parameswar Krishnan
    ACS APPLIED NANO MATERIALS, 2021, 4 (12) : 12845 - 12890
  • [8] Graphitic Carbon Nitride-Based Z-Scheme Structure for Photocatalytic CO2 Reduction
    Lin, Jingkai
    Tian, Wenjie
    Zhang, Huayang
    Duan, Xiaoguang
    Sun, Hongqi
    Wang, Shaobin
    ENERGY & FUELS, 2021, 35 (01) : 7 - 24
  • [9] Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid
    Qin, Jiani
    Wang, Sibo
    Ren, He
    Hou, Yidong
    Wang, Xinchen
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 179 : 1 - 8
  • [10] Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction
    Xia, Pengfei
    Zhu, Bicheng
    Yu, Jiaguo
    Cao, Shaowen
    Jaroniec, Mietek
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) : 3230 - 3238