Nitrate (NO3-) contamination is becoming a major concern due to the negative effects of an excessive NO3- presence in water which can have detrimental effects on human health. Sensitive, real-time, low-cost, and portable measurement systems able to detect extremely low concentrations of NO3- in water are thus becoming extremely important. In this work, we present a novel method to realize a low-cost and easy to fabricate amperometric sensor capable of detecting small concentrations of NO3- in real water samples. The novel fabrication technique combines printing of a silver (Ag) working electrode with subsequent modification of the electrode with electrodeposited copper (Cu) nanoclusters. The process was tuned in order to reach optimized sensor response, with a high catalytic activity toward electroreduction of NO3- - (sensitivity: 19.578 mu A/mM), as well as a low limit of detection (LOD: 0.207 nM or 0.012 mu g/L) and a good dynamic linear concentration range (0.05 to 5 mM or 31 to 310 mg/L). The sensors were tested against possible interference analytes (NO2-, Cl-, SO42-, HCO3-, CH3COO-, Fe2+,Fe3-, Mn2+, Na+, and Cu2+) yielding only negligible effects [maximum standard deviation (SD) was 3.9 mu A]. The proposed sensors were also used to detect NO 3 - in real samples, including tap and river water, through the standard addition method, and the results were compared with the outcomes of high-performance liquid chromatography (HPLC). Temperature stability (maximum SD 3.09 mu A), stability over time (maximum SD 3.69 mu A), reproducibility (maximum SD 3.20 mu A), and repeatability (maximum two-time useable) of this sensor were also investigated.