A MEAN-VALUE THEOREM FOR SOME EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR ON THE UPPER-HALF SPACE

被引:6
|
作者
Eriksson, Sirkka-Liisa [1 ]
Orelma, Heikki [1 ]
机构
[1] Tampere Univ Technol, Dept Math, FIN-33101 Tampere, Finland
关键词
Laplace-Beltrami operator; mean-value theorem; hypermonogenic function; hyperbolic harmonic function;
D O I
10.5186/aasfm.2011.3606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a mean-value property for solutions of the eigenvalue equation of the Laplace-Beltrami operator Delta(lb)h = -(n - 1)h with respect to the volume and the surface integrals on the Poincare upper-half space R-+(n+1) = {(x(0), ... ,x(n)) is an element of Rn+1 : x(n) > 0} with the Riemannian metric ds(2) = dx(0)(2)+dx(1)(2)+ ... +dx(n)(2)/x(n)(2) .
引用
收藏
页码:101 / 110
页数:10
相关论文
共 41 条