Bayesian learning of thermodynamic integration and numerical convergence for accurate phase diagrams

被引:5
|
作者
Ladygin, V [1 ,2 ,3 ]
Beniya, I [2 ]
Makarov, E. [2 ]
Shapeev, A. [2 ]
机构
[1] Moscow Inst Phys & Technol, Inst Skiy Pereulok 9, Dolgoprudnyi 141700, Moscow Region, Russia
[2] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Bldg 3, Moscow 143026, Russia
[3] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA
基金
俄罗斯基础研究基金会;
关键词
TOTAL-ENERGY CALCULATIONS; LENNARD-JONES SYSTEM; COEXISTENCE; UNCERTAINTY;
D O I
10.1103/PhysRevB.104.104102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate phase diagram calculation from molecular dynamics requires systematic treatment and convergence of statistical averages. In this work we propose a Gaussian process regression based framework for reconstructing the free-energy functions using data of various origins. Our framework allows for propagating statistical uncertainty from finite molecular dynamics trajectories to the phase diagram and automatically performing convergence with respect to simulation parameters. Furthermore, our approach provides a way for automatic optimal sampling in the simulation parameter space based on a Bayesian optimization approach. We validate our methodology by constructing phase diagrams of two model systems, the Lennard-Jones and soft-core potential, and compare the results with the existing studies and our coexistence simulations. Finally, we construct the phase diagram of lithium at temperatures above 300 K and pressures below 30 GPa from a machine-learning potential trained on ab initio data. Our approach performs well when compared to coexistence simulations and experimental results.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Phase diagrams of charged colloids from thermodynamic integration
    Hynninen, A-P
    Panagiotopoulos, A. Z.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (46)
  • [2] A Bayesian approach to evaluating the uncertainty of thermodynamic data and phase diagrams
    Stan, M
    Reardon, B
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2003, 27 (03): : 319 - 323
  • [3] Phase diagrams of light metals and thermodynamic calculations of phase diagrams
    Hasebe, Mitsuhiro
    Keikinzoku/Journal of Japan Institute of Light Metals, 1996, 46 (01): : 45 - 51
  • [4] First-principles molten salt phase diagrams through thermodynamic integration
    Shah, Tanooj
    Fazel, Kamron
    Lian, Jie
    Huang, Liping
    Shi, Yunfeng
    Sundararaman, Ravishankar
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (12):
  • [5] The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams
    Chatterjee, ND
    Kruger, R
    Haller, G
    Olbricht, W
    CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1998, 133 (1-2) : 149 - 168
  • [6] The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams
    Niranjan D. Chatterjee
    Ralf Krüger
    Gerd Haller
    Walter Olbricht
    Contributions to Mineralogy and Petrology, 1998, 133 : 149 - 168
  • [7] Thermodynamic calculation of aqueous phase diagrams
    Arthur D. Pelton
    Gunnar Eriksson
    Klaus Hack
    Christopher W. Bale
    Monatshefte für Chemie - Chemical Monthly, 2018, 149 : 395 - 409
  • [8] Numerical integration in bayesian positioning
    Pesonen, Henri
    Piche, Robert
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2006, 2008, 12 : 908 - 912
  • [9] Thermodynamic calculation of aqueous phase diagrams
    Pelton, Arthur D.
    Eriksson, Gunnar
    Hack, Klaus
    Bale, Christopher W.
    MONATSHEFTE FUR CHEMIE, 2018, 149 (02): : 395 - 409
  • [10] Bayesian integration in sensorimotor learning
    Konrad P. Körding
    Daniel M. Wolpert
    Nature, 2004, 427 : 244 - 247