HIGHER ORDER CONGRUENCES AMONGST HASSE-WEIL L-VALUES

被引:4
|
作者
Delbourgo, Daniel [1 ]
Peters, Lloyd [2 ]
机构
[1] Univ Waikato, Dept Math, Hamilton 3240, New Zealand
[2] Monash Univ, Sch Math Sci, Melbourne, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
Iwasawa theory; elliptic curves; K-theory; L-functions; IWASAWA THEORY;
D O I
10.1017/S1446788714000445
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the (d + 1)-dimensional Lie group G = Z(p)(x) x Z(p)(circle plus d), we determine through the use of p-power congruences a necessary and su ffi cient set of conditions whereby a collection of abelian L-functions arises from an element in K-1(Z(p)[G]). If E is a semistable elliptic curve over Q, these abelian L-functions already exist; therefore, one can obtain many new families of higher order p-adic congruences. The first layer congruences are then verified computationally in a variety of cases.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 24 条