(p, q)-analogues of the generalized Touchard polynomials and Stirling numbers

被引:1
|
作者
Oussi, Lahcen [1 ]
机构
[1] Univ Wroclaw, Inst Math, Wroclaw, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2022年 / 33卷 / 03期
基金
奥地利科学基金会;
关键词
Touchard polynomial; (p; q)-calculus; q)-Stirling number; q)-Bell number; Spivey relation; Dobinski formula; OPERATORS;
D O I
10.1016/j.indag.2021.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce a (p, q)-deformed analogues of the generalized Touchard polynomials and Stirling numbers, the post-quantum analogues of the q-deformed generalized Touchard polynomials and Stirling numbers. The connection between these deformations is established. A recurrence relation for the (p, q)-deformed generalized Touchard polynomials is expounded, elucidating a (p, q)-deformation of Spivey's relation. (C) 2021 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:664 / 681
页数:18
相关论文
共 50 条
  • [1] Touchard like polynomials and generalized Stirling numbers
    Dattoli, G.
    Germano, B.
    Martinelli, M. R.
    Ricci, P. E.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (12) : 6661 - 6665
  • [2] Tsallis p,q-deformed Touchard polynomials and Stirling numbers
    O. Herscovici
    T. Mansour
    [J]. Russian Journal of Mathematical Physics, 2017, 24 : 37 - 50
  • [3] Tsallis p,q-deformed Touchard polynomials and Stirling numbers
    Herscovici, O.
    Mansour, T.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2017, 24 (01) : 37 - 50
  • [4] On two kinds of q-analogues of generalized Stirling numbers
    Xu, Aimin
    Tang, Peipei
    [J]. RAMANUJAN JOURNAL, 2017, 43 (02): : 371 - 381
  • [5] On two kinds of q-analogues of generalized Stirling numbers
    Aimin Xu
    Peipei Tang
    [J]. The Ramanujan Journal, 2017, 43 : 371 - 381
  • [6] On q-deformed generalized Touchard polynomials
    Mansour, Toufik
    Schork, Matthias
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (04): : 634 - 645
  • [7] A p, q-ANALOGUE OF THE GENERALIZED STIRLING NUMBERS
    Corcino, Roberto B.
    Montero, Charles B.
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 15 (02): : 137 - 155
  • [8] Some (p, q)-analogues of Apostol type numbers and polynomials
    Acikgoz, Mehmet
    Araci, Serkan
    Duran, Ugur
    [J]. ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (01): : 37 - 50
  • [9] Rook theory, generalized Stirling numbers and (p,q)-analogues -: art. no. R84
    Remmel, JB
    Wachs, ML
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [10] The generalized Touchard polynomials revisited
    Mansour, Toufik
    Schork, Matthias
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (19) : 9978 - 9991