Anomalies in fluid dynamics: flows in a chiral background via variational principle

被引:6
|
作者
Abanov, A. G. [1 ,2 ]
Wiegmann, P. B. [3 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[3] Univ Chicago, Kadanoff Ctr Theoret Phys, 5640 South Ellis Ave, Chicago, IL 60637 USA
关键词
chiral anomaly; variational principle; fluid dynamics; helicity; INVARIANTS;
D O I
10.1088/1751-8121/ac9202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study flows of barotropic perfect fluid under the simultaneous action of the electromagnetic field and the axial-vector potential, the external field conjugate to the fluid helicity. We obtain the deformation of the Euler equation by the axial-vector potential and the deformations of various currents by two external fields. We show that the divergence of the vector and axial currents are controlled by the chiral anomaly known in quantum field theories with Dirac fermions. We obtain these results by extending the variational principle for barotropic flows of a perfect fluid by coupling with the external axial-vector potential.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Variational principle for relativistic fluid dynamics
    Kodama, T
    Elze, HT
    Hama, Y
    Makler, M
    Rafelski, J
    ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 1999, 10 (2-3): : 275 - 285
  • [2] A Variational Principle for Dissipative Fluid Dynamics
    Fukagawa, Hiroki
    Fujitani, Youhei
    PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (05): : 921 - 935
  • [3] Variational principle for relativistic fluid dynamics
    Kodama, Takeshi
    Elze, Hans-Thomas
    Hama, Yogiro
    Makler, Martin
    Rafelski, Johann
    Acta Physica Hungarica New Series Heavy Ion Physics, 10 (2-3): : 275 - 285
  • [4] Variational principle for relativistic fluid dynamics
    Elze, HT
    Hama, Y
    Kodama, T
    Makler, M
    Rafelski, J
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1999, 25 (09) : 1935 - 1957
  • [5] Gauge principle and variational formulation for flows of an ideal fluid
    Kambe, T
    ACTA MECHANICA SINICA, 2003, 19 (05) : 437 - 452
  • [6] Gauge principle and variational formulation for flows of an ideal fluid
    Kambe Tsutomu
    Acta Mechanica Sinica, 2003, 19 : 437 - 452
  • [7] Variational formulation of ideal fluid flows according to gauge principle
    Kambe, Tsutomu
    FLUID DYNAMICS RESEARCH, 2008, 40 (06) : 399 - 426
  • [8] ON THE VARIATIONAL PRINCIPLE FOR THE EQUATIONS OF PERFECT FLUID-DYNAMICS
    SERRE, D
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (06): : 739 - 758
  • [10] A variational principle for gradient flows
    Ghoussoub, N
    Tzou, L
    MATHEMATISCHE ANNALEN, 2004, 330 (03) : 519 - 549