Time-of-flight detection of ultra-cold atoms using resonant frequency modulation imaging

被引:13
|
作者
Hardman, K. S. [1 ]
Wigley, P. B. [1 ]
Everitt, P. J. [1 ]
Manju, P. [1 ]
Kuhn, C. C. N. [1 ]
Robins, N. P. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Quantum Sci, Quantum Sensors & Atomlaser Lab, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
SPECTROSCOPY; PROBE;
D O I
10.1364/OL.41.002505
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Resonant frequency modulation imaging is used to detect free falling ultra-cold atoms. A theoretical comparison of fluorescence imaging (FI) and frequency modulation imaging (FMI) is made, indicating that for low optical depth clouds, FMI accomplished a higher signal-to-noise ratio under conditions necessary for a 200 mu m spatially resolved atom interferometer. A 750 ms time-of-flight measurement reveals near atom shot-noise limited number measurements of 2 x 10(6) Bose-condensed Rb-87 atoms. The detection system is applied to high precision spinor BEC based atom interferometer. (C) 2016 Optical Society of America
引用
收藏
页码:2505 / 2508
页数:4
相关论文
共 50 条
  • [1] Ultra-Cold Bosons in Optical Lattice: Time-of-Flight Imaging of Atom-Atom Correlations
    Zaleski, T. A.
    Kopec, T. K.
    ACTA PHYSICA POLONICA A, 2012, 121 (04) : 796 - 800
  • [2] Time-of-flight imaging based on resonant photoelastic modulation
    Atalar, Okan
    Van Laer, Raphael
    Sarabalis, Christopher J.
    Safavi-Naeini, Amir H.
    Arbabian, Amin
    APPLIED OPTICS, 2019, 58 (09) : 2235 - 2247
  • [3] An optical frequency standard with cold and ultra-cold calcium atoms
    Riehle, F
    Degenhardt, C
    Lisdat, C
    Wilpers, G
    Schnatz, H
    Binnewies, T
    Stoehr, H
    Sterr, U
    ASTROPHYSICS, CLOCKS AND FUNDAMENTAL CONSTANTS, 2004, 648 : 229 - 244
  • [4] A Ca optical frequency standard based on ultra-cold atoms
    Helmcke, J
    Wilpers, G
    Degenhardt, C
    Binnewies, T
    Sterr, U
    Riehle, F
    2002 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS, CONFERENCE DIGEST, 2002, : 154 - 155
  • [5] Optical frequency standards based on ultra-cold strontium atoms
    Ludlow, AD
    Ido, T
    Boyd, MM
    Zelevinsky, T
    Blatt, S
    Notcutt, M
    Foreman, S
    Ye, J
    2005 DIGEST OF THE LEOS SUMMER TOPICAL MEETINGS, 2005, : 77 - 78
  • [6] Non-destructive shadowgraph imaging of ultra-cold atoms
    Wigley, P. B.
    Everitt, P. J.
    Hardman, K. S.
    Hush, M. R.
    Wei, C. H.
    Sooriyabandara, M. A.
    Manju, P.
    Close, J. D.
    Robins, N. P.
    Kuhn, C. C. N.
    OPTICS LETTERS, 2016, 41 (20) : 4795 - 4798
  • [7] Assessment of a time-of-flight detection technique for measuring small velocities of cold atoms
    Hagman, H.
    Sjolund, P.
    Petra, S. J. H.
    Nylen, M.
    Kastberg, A.
    Ellmann, H.
    Jersblad, J.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (08)
  • [8] Perfect detection of ultra-cold atoms by laser-induced ionization
    Ruschhaupt, A
    Navarro, B
    Muga, JG
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (17) : L313 - L319
  • [9] Quantum time-of-flight distribution for cold trapped atoms
    Ali, Md. Manirul
    Home, Dipankar
    Majumdar, A. S.
    Pan, Alok K.
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [10] Detection of the clock transition ( 1.14 μm) in ultra-cold thulium atoms
    Golovizin, A. A.
    Kalganova, E. S.
    Sukachev, D. D.
    Vishnyakova, G. A.
    Semerikov, I. A.
    Soshenko, V. V.
    Tregubov, D. O.
    Akimov, A. V.
    Kolachevsky, N. N.
    Khabarova, K. Yu.
    Sorokin, V. N.
    QUANTUM ELECTRONICS, 2015, 45 (05) : 482 - 485