Spark plasma sintering of graphene reinforced hydroxyapatite composites

被引:36
|
作者
Klebert, Szilvia [1 ]
Balazsi, Csaba [2 ]
Balazsi, Katalin [3 ]
Bodis, Eszter [1 ]
Fazekas, Peter [1 ]
Keszler, Anna Maria [1 ]
Szepvoelgyi, Janos [1 ]
Karoly, Zoltan [1 ]
机构
[1] Res Ctr Nat Sci HAS, Inst Mat & Environm Chem, H-1117 Budapest, Hungary
[2] Bay Zoltan Nonprofit Ltd Appl Res, Inst Mat Sci & Technol, H-1116 Budapest, Hungary
[3] Hungarian Acad Sci, Inst Tech Phys & Mat Sci, Res Ctr Nat Sci, H-1121 Budapest, Hungary
关键词
Composite; Hardness; SPS; Hydroxyapatite; Graphene; CALCIUM-PHOSPHATE BIOCERAMICS; THERMAL-DECOMPOSITION; MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; MICROSTRUCTURE; CERAMICS; POWDERS; SI3N4; BONE; BODY;
D O I
10.1016/j.ceramint.2014.11.033
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydroxyapatite (prepared from eggshell)/graphene (HAP/GNPs) composites were prepared by spark plasma sintering (SPS). Pure HAP does not have good mechanical properties so it is necessary to combine them with other materials, which endow them acceptable strength. Sintering was carried out at various temperatures (700 degrees C and 900 degrees C) and holding times (5 and 10 min). Rapid processing time and low sintering temperatures was of importance to avoid HAP decomposition. Mechanical and structural properties of the sintered bodies were studied with different methods. The highest relative density similar to 96% was obtained at 700 degrees C sintering temperature regardless of the holding time. Composite with the best mechanical properties (hardness similar to 4 GPa, 3-point bending strength similar to 119 MPa) consisted of HAP elongated grains with average length of 300 nm. The GNPs were agglomerated and located on grain boundaries closed to porosities. The structural observation confirmed increased fraction of hexagonal shaped grains, and poorer mechanical properties with increased sintering time and temperature. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:3647 / 3652
页数:6
相关论文
共 50 条
  • [1] Spark Plasma Sintering of Graphene Nanoplatelets Reinforced Aluminium 6061 Alloy Composites
    Khan, Mahmood
    Ud-Din, Rafi
    Wadood, Abdul
    Syed, Wilayat Husain
    Akhtar, Shahid
    Aune, Ragnhild Elizabeth
    LIGHT METALS 2020, 2020, : 301 - 311
  • [2] Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering
    Wen-ming Tian
    Song-mei Li
    Bo Wang
    Xin Chen
    Jian-hua Liu
    Mei Yu
    International Journal of Minerals,Metallurgy and Materials, 2016, 23 (06) : 723 - 729
  • [3] Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering
    Wen-ming Tian
    Song-mei Li
    Bo Wang
    Xin Chen
    Jian-hua Liu
    Mei Yu
    International Journal of Minerals, Metallurgy, and Materials, 2016, 23 : 723 - 729
  • [4] Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering
    Tian, Wen-ming
    Li, Song-mei
    Wang, Bo
    Chen, Xin
    Liu, Jian-hua
    Yu, Mei
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2016, 23 (06) : 723 - 729
  • [5] Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering
    Kim, Duk-Yeon
    Han, Young-Hwan
    Lee, Jun Hee
    Kang, Inn-Kyu
    Jang, Byung-Koog
    Kim, Sukyoung
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [6] Graphene nanoplatelets reinforced aluminum alloy matrix composites produced by spark plasma sintering
    Puchy, V
    Podobova, M.
    Dzunda, R.
    Hvizdos, P.
    Velgosova, O.
    Besterci, M.
    Ballokova, B.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2021, 59 (04): : 237 - 244
  • [7] Spark plasma sintering of graphene platelet reinforced zirconia composites with improved mechanical performance
    Liu, Jian
    Guo, Hengkai
    Su, Ying
    Wang, Libo
    Wei, Liao
    Yang, Gang
    Yang, Yi
    Jiang, Kyle
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 688 : 70 - 75
  • [8] Preparation and characterization of mechanical properties of carbon nanotube reinforced hydroxyapatite composites consolidated by spark plasma sintering
    Meng, Ye
    Qiang, Wenjiang
    Pang, Jingqin
    2017 2ND INTERNATIONAL SEMINAR ON ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2017, 231
  • [9] Characterization of boron nitride-reinforced hydroxyapatite composites prepared by spark plasma sintering and hot press
    Prajatelistia, Ekavianty
    Han, Young-Hwan
    Kim, Byung Nam
    Kim, Young-Moon
    Lee, Kyeongseok
    Jeong, Young-Keun
    Kim, Doo-In
    Kim, Kwang-Ho
    Kim, Sukyoung
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2013, 121 (1412) : 344 - 347
  • [10] Spark plasma sintering of graphene reinforced silicon carbide ceramics
    Bodis, Eszter
    Cora, Ildiko
    Balazsi, Csaba
    Nemeth, Peter
    Karoly, Zoltan
    Klebert, Szilvia
    Fazekas, Peter
    Keszler, Anna M.
    Szepvolgyi, Janos
    CERAMICS INTERNATIONAL, 2017, 43 (12) : 9005 - 9011