An r-dominance-based preference multi-objective optimization for many-objective optimization

被引:10
|
作者
Liu, Ruochen [1 ]
Song, Xiaolin [1 ]
Fang, Lingfen [1 ]
Jiao, Licheng [1 ]
机构
[1] Xidian Univ, Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Preference multi-objective optimization; Artificial immune system; Preference rank; Many-objective problem; EVOLUTIONARY ALGORITHMS; CLONAL SELECTION; GENETIC ALGORITHM; IMMUNE ALGORITHM; SEARCH; CONVERGENCE;
D O I
10.1007/s00500-016-2098-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary multi-objective optimization (EMO) algorithms have been used in finding a representative set of Pareto-optimal solutions in the past decade and beyond. However, most of Pareto domination-based multi-objective optimization evolutionary algorithms (MOEAs) are not suitable for many-objective optimization, in which, a good trade-off among many objectives becomes very difficult. In real-world applications, the fact is that the decision-maker is not interested in the overall Pareto-optimal front since the final decision is a unique or several solutions. So the decision-maker can incorporate his/her preferences into the search process of MOEAs to guide the search toward the preferred parts of the Pareto region rather than the whole Pareto-optimal region. In this paper, we hybridize the classical Pareto dominance principle with reference-based dominance and propose a reference-dominance-based preference multi-objective optimization algorithm (r-PMOA). The proposed method has been extensively compared with other recently proposed preference-based EMO approaches over several benchmark problems of multi-objective optimization having 2-10 objectives. The results of the experiment indicate that r-PMOA achieves competitive results.
引用
收藏
页码:5003 / 5024
页数:22
相关论文
共 50 条
  • [1] An r-dominance-based preference multi-objective optimization for many-objective optimization
    Ruochen Liu
    Xiaolin Song
    Lingfen Fang
    Licheng Jiao
    Soft Computing, 2017, 21 : 5003 - 5024
  • [2] Improved r-dominance-based particle swarm optimization for multi-objective optimization
    School of Automation, Nanjing University of Science and Technology, Nanjing
    Jiangsu
    210094, China
    Kong Zhi Li Lun Yu Ying Yong, 5 (623-630):
  • [3] Partial Dominance for Many-Objective Optimization
    Helbig, Marde
    Engelbrecht, Andries
    2020 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE (ISMSI 2020), 2020, : 81 - 86
  • [4] A Projection-Based Evolutionary Algorithm for Multi-Objective and Many-Objective Optimization
    Peng, Funan
    Lv, Li
    Chen, Weiru
    Wang, Jun
    PROCESSES, 2023, 11 (05)
  • [5] A diversity ranking based evolutionary algorithm for multi-objective and many-objective optimization
    Chen, Guoyu
    Li, Junhua
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 48 : 274 - 287
  • [6] Towards Many-Objective Optimization: Objective Analysis, Multi-Objective Optimization and Decision-Making
    Zheng, J. H.
    Kou, Y. N.
    Jing, Z. X.
    Wu, Q. H.
    IEEE ACCESS, 2019, 7 : 93742 - 93751
  • [7] An α-dominance expandation based algorithm for many-objective optimization
    Liu, Junhua
    Wang, Yuping
    Wang, Xingyin
    Sui, Xin
    Guo, Si
    Liu, Liwen
    2017 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2017, : 6 - 10
  • [8] On the effect of normalization in MOEA/D for multi-objective and many-objective optimization
    Hisao Ishibuchi
    Ken Doi
    Yusuke Nojima
    Complex & Intelligent Systems, 2017, 3 : 279 - 294
  • [9] On the effect of normalization in MOEA/D for multi-objective and many-objective optimization
    Ishibuchi, Hisao
    Doi, Ken
    Nojima, Yusuke
    COMPLEX & INTELLIGENT SYSTEMS, 2017, 3 (04) : 279 - 294
  • [10] Extending AεSεH from Many-objective to Multi-objective Optimization
    Aguirre, Hernan
    Yazawa, Yuki
    Oyama, Akira
    Tanaka, Kiyoshi
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 239 - 250