Theoretical Leidenfrost point (LFP) model for sessile droplet

被引:21
|
作者
Cai, Chang [1 ,2 ]
Mudawar, Issam [2 ]
Liu, Hong [1 ]
Si, Chao [1 ]
机构
[1] Dalian Univ Technol, Sch Energy & Power Engn, Minist Educ, Key Lab Ocean Energy Utilizat & Energy Conservat, Dalian 116024, Peoples R China
[2] Purdue Univ, Boiling & Two Phase Flow Lab, Sch Mech Engn, 585 Purdue Mall, W Lafayette, IN 97907 USA
基金
中国国家自然科学基金;
关键词
Leidenfrost point (LFP); Sessile droplets; Droplet evaporation; Surface roughness; CRITICAL HEAT-FLUX; ALUMINUM-ALLOY SURFACES; EMISSIVITY CHARACTERISTICS; BOILING REGIMES; FILM; EVAPORATION; ROUGHNESS; TEMPERATURE; LONG;
D O I
10.1016/j.ijheatmasstransfer.2019.118802
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the present paper, a theoretical investigation is undertaken in pursuit of a new mechanistically based Leidenfrost point (LFP) model for a sessile droplet. The model consists of sub-models describing temporal variations of droplet size and shape, and thickness of the vapor layer separating the droplet from the heating surface during the evaporation process. Starting from the film boiling regime, it is shown that decreasing surface temperature causes monotonic thinning of the vapor layer. The primary hypothesis of the model is that as Leidenfrost temperature is reached, the vapor layer becomes sufficiently thin to enable surface roughness protrusions to breach the droplet underside. It is shown that, because of the stochastic nature of surface roughness, an appropriate statistical parameter of surface height must be determined for comparison with the vapor layer thickness. Using surface profiles measured by the authors along with those obtained from prior studies, it is shown how this statistical parameter may be related to other commonly available parameters. Overall, the model shows good accuracy in predicting temporal records of droplet size and shape, and vapor layer thickness for different liquids and surface temperatures. Combined with the statistical surface height parameter, the model shows very good accuracy in predicting the Leidenfrost temperature, evidenced by a mean absolute error of 7.77%. (C) 2019 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [1] Study on the Theoretical Model of Leidenfrost Temperature for a Sessile Droplet on a High-temperature Wall
    Cai, Chang
    Liu, Hong
    Xi, Xi
    Issam, Mudawar
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2021, 42 (03): : 732 - 739
  • [2] A model for droplet evaporation near Leidenfrost point
    Xie, Heng
    Zhou, Zhiwei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (25-26) : 5328 - 5333
  • [3] Theoretical model of the Leidenfrost temperature
    Gavrilyuk, Sergey
    Gouin, Henri
    PHYSICAL REVIEW E, 2022, 106 (05)
  • [4] A mathematical model of the Leidenfrost effect on an axisymmetric droplet
    Myers, T. G.
    Charpin, J. P. F.
    PHYSICS OF FLUIDS, 2009, 21 (06)
  • [5] Leidenfrost point and droplet dynamics on heated micropillar array surface
    Kim, Seol Ha
    Lee, Gicheol
    Kim, HyungMo
    Kim, Moo Hwan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 139 : 1 - 9
  • [6] Theoretically - Based Leidenfrost point model
    2000, American Society of Mechanical Engineers (366):
  • [7] Leidenfrost droplet trampolining
    Graeber, Gustav
    Regulagadda, Kartik
    Hodel, Pascal
    Kuettel, Christian
    Landolf, Dominic
    Schutzius, Thomas M.
    Poulikakos, Dimos
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Point source modelling approach for sessile droplet evaporation
    Malcolm, Sophie
    Azzam, Ahmed
    Amirfazli, Alidad
    PHYSICS OF FLUIDS, 2024, 36 (01)
  • [9] Theoretical study of droplet impingement on a solid surface below the Leidenfrost temperature
    Fukai, J
    Shiiba, Y
    Miyatake, O
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (10) : 2490 - 2492
  • [10] Leidenfrost droplet trampolining
    Gustav Graeber
    Kartik Regulagadda
    Pascal Hodel
    Christian Küttel
    Dominic Landolf
    Thomas M. Schutzius
    Dimos Poulikakos
    Nature Communications, 12