Biologically Inspired Analogue Signal Processing: Some Results Towards Developing Next Generation Signal Analyzers

被引:0
|
作者
Maharatna, Koushik [1 ]
Ahmadi, Arash [1 ]
Magieri, Eduardo [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO9 5NH, Hants, England
关键词
Biologically-inspired circuits; analogue signal processing; non-linear oscillator; signal analyzer; OSCILLATOR; NETWORK;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we describe the possibility of designing an analogue signal analyzer taking inspiration from biological and chemical information processing methodology present in the nature. The principal component of such a system is an adaptive-frequency Hopf oscillator. Using the proposed methodology it is possible to carry out Fourier as well as time-frequency analysis of a signal (similar to wavelet analysis) without changing the underlying circuit structure. This work may provide a route to a computationally superior and less power consuming next-generation signal processing system. Some open issues for making such an approach to practice are also discussed.
引用
收藏
页码:117 / 120
页数:4
相关论文
共 50 条
  • [1] Biologically inspired signal processing: analyses, algorithms and applications
    Aboutanios, Elias
    McLaughlin, Steve
    Kopsinis, Yannis
    Adve, Raviraj
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2012, : 1 - 2
  • [2] Biologically inspired signal processing: analyses, algorithms and applications
    Elias Aboutanios
    Steve McLaughlin
    Yannis Kopsinis
    Raviraj Adve
    EURASIP Journal on Advances in Signal Processing, 2012
  • [3] Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge
    Li, Kan
    Principe, Jose C.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [4] Biologically Inspired Informatics; Algorithm for Discrete Data and Signal Processing
    Piros, Sandor J.
    Korondi, Peter
    2011 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2011, : 972 - 977
  • [5] Wind profilers: Next generation signal processing
    Wilfong, TL
    Weber, BL
    Wuertz, DB
    Merritt, DA
    28TH CONFERENCE ON RADAR METEOROLOGY, 1997, : 242 - 243
  • [6] Signal Processing in Next-Generation Prosthetics
    Edwards, John
    IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (01) : 9 - 12
  • [7] Next generation radar signal processing system
    Tang, J
    Wang, XQ
    Peng, YN
    Wang, XT
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 595 - 599
  • [8] A BIOLOGICALLY INSPIRED HARDWARE MODULE FOR EMBEDDED AUDITORY SIGNAL PROCESSING APPLICATIONS
    Yang, Xin
    Nibouche, Mokhtar
    Pipe, Tony
    Melhuish, Chris
    BIOSIGNALS 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING, 2009, : 382 - 387
  • [9] dNSP: A biologically inspired dynamic Neural network approach to Signal Processing
    Manuel Cano-Izquierdo, Jose
    Ibarrola, Julio
    Pinzolas, Miguel
    Almonacid, Miguel
    NEURAL NETWORKS, 2008, 21 (07) : 1006 - 1019
  • [10] Roadmap on signal processing for next generation measurement systems
    Iakovidis, Dimitris K.
    Ooi, Melanie
    Kuang, Ye Chow
    Demidenko, Serge
    Shestakov, Alexandr
    Sinitsin, Vladimir
    Henry, Manus
    Sciacchitano, Andrea
    Discetti, Stefano
    Donati, Silvano
    Norgia, Michele
    Menychtas, Andreas
    Maglogiannis, Ilias
    Wriessnegger, Selina C.
    Chacon, Luis Alberto Barradas
    Dimas, George
    Filos, Dimitris
    Aletras, Anthony H.
    Toger, Johannes
    Dong, Feng
    Ren, Shangjie
    Uhl, Andreas
    Paziewski, Jacek
    Geng, Jianghui
    Fioranelli, Francesco
    Narayanan, Ram M.
    Fernandez, Carlos
    Stiller, Christoph
    Malamousi, Konstantina
    Kamnis, Spyros
    Delibasis, Konstantinos
    Wang, Dong
    Zhang, Jianjing
    Gao, Robert X.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (01)