Augmented two stream network for robust action recognition adaptive to various action videos

被引:7
|
作者
Leng, Chuanjiang [1 ]
Ding, Qichuan [1 ]
Wu, Chengdong [1 ]
Chen, Ange [1 ]
机构
[1] Northeastern Univ, Fac Robot Sci & Engn, Shenyang 110169, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-stream network; Action recognition; Data skew;
D O I
10.1016/j.jvcir.2021.103344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In video-based action recognition, using videos with different frame numbers to train a two-stream network can result in data skew problems. Moreover, extracting the key frames from a video is crucial for improving the training and recognition efficiency of action recognition systems. However, previous works suffer from problems of information loss and optical-flow interference when handling videos with different frame numbers. In this paper, an augmented two-stream network (ATSNet) is proposed to achieve robust action recognition. A frame-number-unified strategy is first incorporated into the temporal stream network to unify the frame numbers of videos. Subsequently, the grayscale statistics of the optical-flow images are extracted to filter out any invalid optical-flow images and produce the dynamic fusion weights for the two branch networks to adapt to different action videos. Experiments conducted on the UCF101 dataset demonstrate that ATSNet outperforms previously defined methods, improving the recognition accuracy by 1.13%.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] 3D Convolutional Two-Stream Network for Action Recognition in Videos
    Li, Min
    Qi, Yuezhu
    Yang, Jian
    Zhang, Yanfang
    Ren, Junxing
    Du, Hong
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1697 - 1701
  • [2] Two-Stream Convolutional Networks for Action Recognition in Videos
    Simonyan, Karen
    Zisserman, Andrew
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [3] A heterogeneous two-stream network for human action recognition
    Liao, Shengbin
    Wang, Xiaofeng
    Yang, ZongKai
    AI COMMUNICATIONS, 2023, 36 (03) : 219 - 233
  • [4] A Spatiotemporal Heterogeneous Two-Stream Network for Action Recognition
    Chen, Enqing
    Bai, Xue
    Gao, Lei
    Tinega, Haron Chweya
    Ding, Yingqiang
    IEEE ACCESS, 2019, 7 : 57267 - 57275
  • [5] A Multimode Two-Stream Network for Egocentric Action Recognition
    Li, Ying
    Shen, Jie
    Xiong, Xin
    He, Wei
    Li, Peng
    Yan, Wenjie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 357 - 368
  • [6] Two-Stream RNN/CNN for Action Recognition in 3D Videos
    Zhao, Rui
    Ali, Haider
    van der Smagt, Patrick
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 4260 - 4267
  • [7] Convolutional Two-Stream Network Fusion for Video Action Recognition
    Feichtenhofer, Christoph
    Pinz, Axel
    Zisserman, Andrew
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1933 - 1941
  • [8] Two-Stream Convolutional Neural Network for Video Action Recognition
    Qiao, Han
    Liu, Shuang
    Xu, Qingzhen
    Liu, Shouqiang
    Yang, Wanggan
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (10): : 3668 - 3684
  • [9] Hidden Two-Stream Collaborative Learning Network for Action Recognition
    Zhou, Shuren
    Chen, Le
    Sugumaran, Vijayan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (03): : 1545 - 1561
  • [10] Two-Stream Convolution Neural Network with Video-stream for Action Recognition
    Dai, Wei
    Chen, Yimin
    Huang, Chen
    Gao, Ming-Ke
    Zhang, Xinyu
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,