Small interplanetary magnetic flux rope

被引:8
|
作者
Feng, HengQiang [1 ,2 ]
Zhao, GuoQing [1 ,2 ]
Wang, JieMin [1 ,2 ]
机构
[1] Luoyang Normal Univ, Inst Space Phys, Luoyang, Peoples R China
[2] Luoyang Normal Univ, Henan Key Lab Elctromagnt Transformat, Detect, Luoyang, Peoples R China
关键词
magnetic flux ropes; magnetic cloud; coronal mass ejection; heliospheric current sheet; CORONAL MASS EJECTIONS; SOLAR-WIND; FIELD STRUCTURE; CLOUDS; MULTISPACECRAFT; RECONNECTION; TEMPERATURE; CONNECTION; ELECTRONS; DYNAMICS;
D O I
10.1007/s11431-018-9481-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Small interplanetary magnetic flux ropes (SIMFRs) are often detected by space satellites in the interplanetary space near 1 AU. These ropes can be fitted by a cylindrically symmetric magnetic model. The durations of SIMFRs are usually <12 h, and the diameters of SIMFRs are <0.20 AU and show power law distribution. Most SIMFRs are observed in the typically slow solar wind (<500 km/s), and only several events are observed with high speed (>700 km/s). Some SIMFRs demonstrate abnormal heavy ion compositions, such as abnormally high He abundance, abnormally high average iron ionization, and enhanced O7+ abundance. These SIMFRs originate from remarkably hot coronal origins. Approximately 74.5% SIMFRs exhibit counter-streaming suprathermal electron signatures. Given their flux rope configuration, SIMFRs are potentially more effective for substorms. SIMFRs and magnetic clouds have many similar observational properties but also show some different observations. These similar properties may indicate that SIMFRs are the interplanetary counterparts of small coronal mass ejections. Some direct bodies of evidence have confirmed that several SIMFRs are interplanetary counterparts of CMEs. However, their different properties may imply that some SIMFRs have interplanetary origins. Therefore, one of the main aims of future research on SIMFRs is to determine whether SIMFRs originate from two different sources, that is, some events are formed in the solar coronal atmosphere, whereas others originate from the interplanetary space. Finally, in this paper, we offer some prospects that should be addressed in the future.
引用
下载
收藏
页码:183 / 194
页数:12
相关论文
共 50 条
  • [1] Small interplanetary magnetic flux rope
    HengQiang Feng
    GuoQing Zhao
    JieMin Wang
    Science China Technological Sciences, 2020, 63 : 183 - 194
  • [2] Small interplanetary magnetic flux rope
    FENG HengQiang
    ZHAO GuoQing
    WANG JieMin
    Science China(Technological Sciences), 2020, 63 (02) : 183 - 194
  • [3] Small interplanetary magnetic flux rope
    FENG HengQiang
    ZHAO GuoQing
    WANG JieMin
    Science China Technological Sciences, 2020, (02) : 183 - 194
  • [4] OBSERVATIONS OF A SMALL INTERPLANETARY MAGNETIC FLUX ROPE ASSOCIATED WITH A MAGNETIC RECONNECTION EXHAUST
    Feng, H. Q.
    Wu, D. J.
    ASTROPHYSICAL JOURNAL, 2009, 705 (02): : 1385 - 1387
  • [5] Observations of a Small Interplanetary Magnetic Flux Rope Opening by Interchange Reconnection
    Wang, J. M.
    Feng, H. Q.
    Zhao, G. Q.
    ASTROPHYSICAL JOURNAL, 2018, 853 (01):
  • [6] Magnetic Disconnections at the Boundary of a Small Interplanetary Magnetic Flux Rope Associated with a Reconnection Exhaust
    JieMin Wang
    Qiang Liu
    Yan Zhao
    Solar Physics, 2018, 293
  • [7] Magnetic Disconnections at the Boundary of a Small Interplanetary Magnetic Flux Rope Associated with a Reconnection Exhaust
    Wang, JieMin
    Liu, Qiang
    Zhao, Yan
    SOLAR PHYSICS, 2018, 293 (08)
  • [8] The magnetic helicity of an interplanetary hot flux rope
    Dasso, S
    Mandrini, CH
    Démoulin, P
    SOLAR WIND TEN, PROCEEDINGS, 2003, 679 : 786 - 789
  • [9] The relationship between small interplanetary magnetic flux rope and the substorm expansion phase
    Feng, H. Q.
    Chao, J. K.
    Lyu, L. H.
    Lee, L. C.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [10] Interplanetary Magnetic Flux Rope Observed at Ground Level by HAWC
    Akiyama, S.
    Alfaro, R.
    Alvarez, C.
    Angeles Camacho, J. R.
    Arteaga-Velazquez, J. C.
    Arunbabu, K. P.
    Avila Rojas, D.
    Solares, H. A. Ayala
    Belmont-Moreno, E.
    Caballero-Mora, K. S.
    Capistran, T.
    Carraminana, A.
    Casanova, S.
    Colin-Farias, P.
    Cotti, U.
    Cotzomi, J.
    De la Fuente, E.
    de Leon, C.
    Hernandez, R. Diaz
    Espinoza, C.
    Fraija, N.
    Galvan-Gamez, A.
    Garcia, D.
    Garcia-Gonzalez, J. A.
    Garfias, F.
    Gonzalez, M. M.
    Goodman, J. A.
    Harding, J. P.
    Hona, B.
    Huang, D.
    Hueyotl-Zahuantitla, F.
    Huntemeyer, P.
    Iriarte, A.
    Joshi, V.
    Kieda, D.
    Kunde, G. J.
    Lara, A.
    Vargas, H. Leon
    Luis-Raya, G.
    Malone, K.
    Martinez-Castro, J.
    Matthews, J. A.
    Miranda-Romagnoli, P.
    Moreno, E.
    Nayerhoda, A.
    Nellen, L.
    Newbold, M.
    Niembro, T.
    Nieves-Chinchilla, T.
    Noriega-Papaqui, R.
    ASTROPHYSICAL JOURNAL, 2020, 905 (01):