A numerical scheme for the Mullins-Sekerka evolution in three space dimensions

被引:0
|
作者
Bates, PW [1 ]
Brown, S [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a semi-implicit numerical scheme for solving a free boundary value problem in three space dimensions. The algorithm is implemented and some computational experiments are performed
引用
收藏
页码:12 / 26
页数:15
相关论文
共 50 条
  • [1] MULLINS-SEKERKA AS THE WASSERSTEIN FLOW OF THE PERIMETER
    Chambolle, Antonin
    Laux, Tim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (07) : 2943 - 2956
  • [2] Numerical calculations for a Mullins-Sekerka problem in 2D
    Su, JZ
    Tran, BL
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: ANALYTIC AND NUMERICAL TECHNIQUES, 2004, : 239 - 244
  • [3] Weak Solutions of Mullins-Sekerka Flow as a Hilbert Space Gradient Flow
    Hensel, Sebastian
    Stinson, Kerrek
    PHYSICAL REVIEW B, 2023, 108 (13)
  • [4] Weak Solutions of Mullins-Sekerka Flow as a Hilbert Space Gradient Flow
    Hensel, Sebastian
    Stinson, Kerrek
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (01)
  • [5] The asymptotics of the area-preserving mean curvature and the Mullins-Sekerka flow in two dimensions
    Julin, Vesa
    Morini, Massimiliano
    Ponsiglione, Marcello
    Spadaro, Emanuele
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1969 - 1999
  • [6] Existence of weak solutions for the Mullins-Sekerka flow
    Röger, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) : 291 - 301
  • [7] Axisymmetric three-dimensional finger solutions in Mullins-Sekerka equation
    Su, JZ
    Tran, BL
    IMA JOURNAL OF APPLIED MATHEMATICS, 2004, 69 (04) : 421 - 435
  • [8] Laplacian growth of parallel needles: Their Mullins-Sekerka instability
    Gouyet, JF
    Bernard, MO
    PARADIGMS OF COMPLEXITY: FRACTALS AND STRUCTURES IN THE SCIENCES, 2000, : 215 - 227
  • [9] Relaxation to a planar interface in the Mullins-Sekerka problem
    Chugreeva, Olga
    Otto, Felix
    Westdickenberg, Maria G.
    INTERFACES AND FREE BOUNDARIES, 2019, 21 (01) : 21 - 40
  • [10] The Mullins-Sekerka problem via the method of potentials
    Escher, Joachim
    Matioc, Anca-Voichita
    Matioc, Bogdan-Vasile
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (05) : 1960 - 1977