The dynamic descriptive complexity of k-clique

被引:2
|
作者
Zeume, Thomas [1 ]
机构
[1] Tech Univ Dortmund, Dortmund, Germany
关键词
Dynamic complexity; k-Clique; Ramsey numbers; BOUNDS;
D O I
10.1016/j.ic.2017.04.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work the dynamic descriptive complexity of the k-clique query is studied. It is shown that when edges may only be inserted then k-clique can be maintained by a quantifier-free update program of arity k - 1, but it cannot be maintained by a quantifierfree update program of arity k - 2(even in the presence of unary auxiliary functions). This establishes an arity hierarchy for graph queries for quantifier-free update programs under insertions. The proof of the lower bound uses upper and lower bounds for Ramsey numbers. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:9 / 22
页数:14
相关论文
共 50 条
  • [1] The Dynamic Descriptive Complexity of k-Clique
    Zeume, Thomas
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2014, PT I, 2014, 8634 : 547 - 558
  • [2] THE MONOTONE COMPLEXITY OF k-CLIQUE ON RANDOM GRAPHS
    Rossman, Benjamin
    SIAM JOURNAL ON COMPUTING, 2014, 43 (01) : 256 - 279
  • [3] The Monotone Complexity of k-Clique on Random Graphs
    Rossman, Benjamin
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 193 - 201
  • [4] On the Constant-Depth Complexity of k-Clique
    Rossman, Benjamin
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 721 - 730
  • [5] The Binomial k-Clique
    Narayana, Nithya Sai
    Sane, Sharad
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (01) : 36 - 45
  • [6] Incremental K-clique clustering in dynamic social networks
    Duan, Dongsheng
    Li, Yuhua
    Li, Ruixuan
    Lu, Zhengding
    ARTIFICIAL INTELLIGENCE REVIEW, 2012, 38 (02) : 129 - 147
  • [7] Incremental K-clique clustering in dynamic social networks
    Dongsheng Duan
    Yuhua Li
    Ruixuan Li
    Zhengding Lu
    Artificial Intelligence Review, 2012, 38 : 129 - 147
  • [8] Parallel Batch-Dynamic k-Clique Counting
    Dhulipala, Laxman
    Liu, Quanquan C.
    Shun, Julian
    Yu, Shangdi
    SYMPOSIUM ON ALGORITHMIC PRINCIPLES OF COMPUTER SYSTEMS, APOCS, 2021, : 129 - 143
  • [9] Faster Combinatorial k-Clique Algorithms
    Abboud, Amir
    Fischer, Nick
    Shechter, Yarin
    LATIN 2024: THEORETICAL INFORMATICS, PT I, 2024, 14578 : 193 - 206
  • [10] The K-clique Densest Subgraph Problem
    Tsourakakis, Charalampos E.
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), 2015, : 1122 - 1132