共 50 条
Anchoring iron oxide nanoparticles on polypyrrole/rGO derived nitrogen-doped carbon as lithium-ion battery anode
被引:20
|作者:
Zhu, Jianbo
[1
,2
]
Wei, Liping
[1
]
Hu, Jun
[1
]
Xue, Chutan
[1
]
机构:
[1] Northwest Univ, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China
[2] Northwest Univ, Shaanxi Prov Key Lab Electroanalyt Chem, Inst Analyt Sci, Xian 710069, Shaanxi, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Fe2O3;
anode;
Nitrogen-doped carbon;
Reversible capacity;
Prolonged cycling life;
ELECTROCHEMICAL PROPERTIES;
LI-STORAGE;
PERFORMANCE;
NANOTUBES;
COMPOSITE;
NANOCOMPOSITES;
AEROGELS;
FILMS;
D O I:
10.1016/j.jallcom.2017.06.239
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Iron oxide (Fe2O3) has attracted much attention due to their appealing features of high theoretical capacity, abundant and environmentally friendly. However, its poor electronic conductivity and inferior cycling stability have strongly hindered the utilization of its theoretical capacity. Compounding Fe2O3 with carbon materials is considered as an effective strategy to overcome these obstacles. Herein, Fe2O3/ NCs composites of Fe2O3 anchored on nitrogen-doped carbon (NCs) derived from polypyrrole/ rGO were achieved by a microwave-assisted hydrolysis method. The morphology and component of as-synthesized Fe2O3/NCs were characterized by scanning electron microscopy, transmission electron microscope, X-ray diffraction, Raman spectra and thermogravimetric analysis. Its electrochemical performances were investigated by cyclic voltammetry and galvanostatic charge-discharge, which shown a large discharge capacity of 865.6 mAh g(-1) at the current density of 20 mA g(-1) with an original coulombic efficiency of 66.2%, larger than that of NCs or Fe2O3 electrodes. Moreover, a stable discharge capacity of 720.6 mAh g(-1) has obtained at 100 mA g(-1) over 200 cycles, as well as a capacity of 496.1 mAh g(-1) after 1000 cycles at 500 mA g1 with a low capacity fading of about 9.7%, showing excellent rate performance and cycling stability for such Fe2O3/NCs electrodes. (C) 2017 Elsevier B. V. All rights reserved.
引用
收藏
页码:729 / 735
页数:7
相关论文
相似文献