Stability of nonparaxial gap-soliton bullets in waveguide gratings

被引:4
|
作者
Otsobo, J. A. Ambassa [1 ,2 ]
Megne, L. Tiam [1 ,2 ]
Tabi, C. B. [3 ]
Kofane, T. C. [1 ,2 ,3 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[2] Univ Yaounde I, Ctr Excellence Africain Technol Informat & Commun, Yaounde, Cameroon
[3] Botswana Int Univ Sci & Technol, Dept Phys & Astron, P-Bag 16, Palapye, Botswana
基金
美国国家科学基金会;
关键词
Gap-soliton bullets; Nonparaxial approximation; 2D nonlinear Schr?dinger equation; Higher-order dispersions; SELF-INDUCED TRANSPARENCY; 3-DIMENSIONAL SPINNING SOLITONS; DISPERSIVE DIELECTRIC FIBERS; NONLINEAR HELMHOLTZ-EQUATION; GINZBURG-LANDAU EQUATION; SPATIOTEMPORAL SOLITONS; OPTICAL PULSES; PROPAGATION; MEDIA; BEAM;
D O I
10.1016/j.chaos.2022.112034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the formation and propagation of gap-soliton bullets in nonlinear periodic waveguides at fre-quencies close to the gap for Bragg reflection beyond the paraxial approximation. Using a multiple-scales analy-sis, we derive a two-dimensional (2D) nonlinear Schrodinger equation with higher-order correction terms that consider the nonparaxial regimes in the slowly-varying envelope approximation. In addition, a fully numerical simulation of the newly derived model equation demonstrates that the mutual balancing between Kerr, dimen-sionality, higher-order dispersions and nonparaxiality allows shape-preserving propagation of gap-soliton bul -lets in a grating waveguide. (c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:9
相关论文
共 30 条
  • [1] Gap-soliton bullets in waveguide gratings
    Aceves, AB
    Fibich, G
    Ilan, B
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 189 (3-4) : 277 - 286
  • [2] GAP-SOLITON PROPAGATION IN NONUNIFORM GRATINGS
    BRODERICK, NGR
    DESTERKE, CM
    PHYSICAL REVIEW E, 1995, 51 (05): : 4978 - 4985
  • [3] Gap-soliton trapping in random one-dimensional gratings
    Tsoy, Eduard N.
    de Sterke, C. Martijn
    Abdullaev, Fatkhulla Kh.
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [4] SIMULATIONS OF GAP-SOLITON GENERATION
    DESTERKE, CM
    PHYSICAL REVIEW A, 1992, 45 (03): : 2012 - 2018
  • [5] Gap-soliton switching in short microresonator structures
    Pereira, S
    Chak, P
    Sipe, JE
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (09) : 2191 - 2202
  • [6] GAP-SOLITON HUNT IN A COUPLED KORTEWEG-DE VRIES SYSTEM
    GRIMSHAW, R
    MALOMED, BA
    TIAN, X
    PHYSICS LETTERS A, 1995, 201 (04) : 285 - 292
  • [7] Localized gap-soliton trains of Bose-Einstein condensates in an optical lattice
    Wang, D. L.
    Yan, X. H.
    Liu, W. M.
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [8] Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating
    Taverner, D
    Broderick, NGR
    Richardson, DJ
    Laming, RI
    Ibsen, M
    OPTICS LETTERS, 1998, 23 (05) : 328 - 330
  • [9] Polaritonic gap-soliton propagation through a wide defect in a resonantly absorbing Bragg grating
    Kazantseva, Elena V.
    Maimistov, Andrei I.
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [10] Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating
    Optoelectronics Research Centre, Southampton University, Southampton SO17 1BJ, United Kingdom
    Opt. Lett., 5 (328-330):