Recruitment order of motor neurons promoted by epidural stimulation in individuals with spinal cord injury

被引:11
|
作者
Ibanez, Jaime [1 ,2 ]
Angeli, Claudia A. [3 ,4 ,5 ]
Harkema, Susan J. [3 ,4 ,5 ,6 ]
Farina, Dario [1 ]
Rejc, Enrico [3 ,6 ]
机构
[1] Imperial Coll London, Dept Bioengn, London, England
[2] UCL, Inst Neurol, Dept Clin & Movement Neurosci, London, England
[3] Univ Louisville, Kentucky Spinal Cord Injury Res Ctr, Louisville, KY 40292 USA
[4] Univ Louisville, Dept Bioengn, Louisville, KY 40292 USA
[5] Univ Louisville Hlth, Frazier Rehabil Inst, Louisville, KY USA
[6] Univ Louisville, Dept Neurol Surg, Louisville, KY 40292 USA
基金
美国国家卫生研究院;
关键词
epidural stimulation; motor neuron; spinal cord injury; standing; recruitment order; NEUROMUSCULAR ELECTRICAL-STIMULATION; FIBER CONDUCTION-VELOCITY; LUMBAR CORD; POSTERIOR STRUCTURES; UNIT RECRUITMENT; SKELETAL-MUSCLE; NEUROMODULATION; SIZE; EXCITABILITY; ADAPTATIONS;
D O I
10.1152/japplphysiol.00293.2021
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Spinal cord epidural stimulation (scES) combined with activity-based training can promote motor function recovery in individuals with motor complete spinal cord injury (SCI). The characteristics of motor neuron recruitment, which influence different aspects of motor control, are still unknown when motor function is promoted by scES. Here, we enrolled five individuals with chronic motor complete SCI implanted with an scES unit to study the recruitment order of motor neurons during standing enabled by scES. We recorded high-density electromyography (HD-EMG) signals on the vastus lateralis muscle and inferred the order of recruitment of motor neurons from the relation between amplitude and conduction velocity of the scES-evoked EMG responses along the muscle fibers. Conduction velocity of scES-evoked responses was modulated over time, whereas stimulation parameters and standing condition remained constant, with average values ranging between 3.0 +/- 0.1 and 4.4 +/- 0.3 m/s. We found that the human spinal circuitry receiving epidural stimulation can promote both orderly (according to motor neuron size) and inverse trends of motor neuron recruitment, and that the engagement of spinal networks promoting rhythmic activity may favor orderly recruitment trends. Conversely, the different recruitment trends did not appear to be related with time since injury or scES implant, nor to the ability to achieve independent knees extension, nor to the conduction velocity values. The proposed approach can be implemented to investigate the effects of stimulation parameters and training-induced neural plasticity on the characteristics of motor neuron recruitment order, contributing to improve mechanistic understanding and effectiveness of epidural stimulation-promoted motor recovery after SCI. NEW & NOTEWORTHY After motor complete spinal cord injury, the human spinal cord receiving epidural stimulation can promote both orderly and inverse trends of motor neuron recruitment. The engagement of spinal networks involved in the generation of rhythmic activity seems to favor orderly recruitment trends.
引用
收藏
页码:1100 / 1110
页数:11
相关论文
共 50 条
  • [1] Spinal Cord Epidural Stimulation for Lower Limb Motor Function Recovery in Individuals with Motor Complete Spinal Cord Injury
    Rejc, Enrico
    Angeli, Claudia A.
    [J]. PHYSICAL MEDICINE AND REHABILITATION CLINICS OF NORTH AMERICA, 2019, 30 (02) : 337 - +
  • [2] Predictors of volitional motor recovery with epidural stimulation in Individuals with chronic spinal cord injury
    Mesbah, Samineh
    Ball, Tyler
    Angeli, Claudia
    Rejc, Enrico
    Dietz, Nicholas
    Ugiliweneza, Beatrice
    Harkema, Susan
    Boakye, Maxwell
    [J]. BRAIN, 2021, 144 (02) : 420 - 433
  • [3] Predictors of volitional motor recovery with epidural stimulation in individuals with chronic spinal cord injury
    Mesbah, Samineh
    Ball, Tyler
    Angeli, Claudia
    Rejc, Enrico
    Dietz, Nicholas
    Ugiliweneza, Beatrice
    Harkema, Susan
    Boakye, Maxwell
    [J]. BRAIN, 2021, 144 : 420 - 433
  • [4] Spinal cord imaging markers and recovery of standing with epidural stimulation in individuals with clinically motor complete spinal cord injury
    Smith, Andrew C.
    Angeli, Claudia A.
    Ugiliweneza, Beatrice
    Weber, Kenneth A., II
    Bert, Robert J.
    Negahdar, Mohammadjavad
    Mesbah, Samineh
    Boakye, Maxwell
    Harkema, Susan J.
    Rejc, Enrico
    [J]. EXPERIMENTAL BRAIN RESEARCH, 2022, 240 (01) : 279 - 288
  • [5] Spinal cord imaging markers and recovery of standing with epidural stimulation in individuals with clinically motor complete spinal cord injury
    Andrew C. Smith
    Claudia A. Angeli
    Beatrice Ugiliweneza
    Kenneth A. Weber
    Robert J. Bert
    Mohammadjavad Negahdar
    Samineh Mesbah
    Maxwell Boakye
    Susan J. Harkema
    Enrico Rejc
    [J]. Experimental Brain Research, 2022, 240 : 279 - 288
  • [6] Epidural spinal cord stimulation for motor recovery in spinal cord injury: A systematic review
    McHugh, Conor
    Taylor, Clare
    Mockler, David
    Fleming, Neil
    [J]. NEUROREHABILITATION, 2021, 49 (01) : 1 - 22
  • [7] Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury
    Hachmann, Jan T.
    Yousak, Andrew
    Wallner, Josephine J.
    Gad, Parag N.
    Edgerton, V. Reggie
    Gorgey, Ashraf S.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2021, 126 (06) : 1843 - 1859
  • [8] Spinal Cord Imaging Markers and Recovery of Volitional Leg Movement With Spinal Cord Epidural Stimulation in Individuals With Clinically Motor Complete Spinal Cord Injury
    Rejc, Enrico
    Smith, Andrew C.
    Weber, Kenneth A., II
    Ugiliweneza, Beatrice
    Bert, Robert J.
    Negahdar, Mohammadjavad
    Boakye, Maxwell
    Harkema, Susan J.
    Angeli, Claudia A.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2020, 14
  • [9] Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: A methodological review
    Taylor, Clare
    McHugh, Conor
    Mockler, David
    Minogue, Conor
    Reilly, Richard B.
    Fleming, Neil
    [J]. PLOS ONE, 2021, 16 (11):
  • [10] Epidural electrical stimulation for spinal cord injury
    Choi, Elliot H.
    Gattas, Sandra
    Brown, Nolan J.
    Hong, John D.
    Limbo, Joshua N.
    Chan, Alvin Y.
    Oh, Michael Y.
    [J]. NEURAL REGENERATION RESEARCH, 2021, 16 (12) : 2367 - 2375