Combining approximation and exact penalty in hierarchical programming

被引:3
|
作者
Bigi, Giancarlo [1 ]
Lampariello, Lorenzo [2 ]
Sagratella, Simone [3 ]
机构
[1] Univ Pisa, Dept Comp Sci, Pisa, Italy
[2] Roma Tre Univ, Dept Business Studies, Rome, Italy
[3] Sapienza Univ Rome, Dept Comp Control & Management Engn Antonio Ruber, Rome, Italy
关键词
Hierarchical programming; optimization problems with variational inequality constraints; approximation approaches; penalty techniques; DISTRIBUTED METHODS; BILEVEL PROGRAMS; ALGORITHMS; PARALLEL;
D O I
10.1080/02331934.2021.1939336
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We address the minimization of an objective function over the solution set of a (non-parametric) lower-level variational inequality. This problem is a special instance of semi-infinite programs and encompasses, as particular cases, simple (smooth) bilevel and equilibrium selection problems. We resort to a suitable approximated version of the hierarchical problem. We show that this, on the one hand, does not perturb the original (exact) program 'too much', on the other hand, allows one to rely on some suitable exact penalty approaches whose convergence properties are established.
引用
收藏
页码:2403 / 2419
页数:17
相关论文
共 50 条
  • [2] Exact penalty and error bounds in DC programming
    Hoai An Le Thi
    Tao Pham Dinh
    Huynh Van Ngai
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (03) : 509 - 535
  • [3] Exact penalty and error bounds in DC programming
    Hoai An Le Thi
    Tao Pham Dinh
    Huynh Van Ngai
    Journal of Global Optimization, 2012, 52 : 509 - 535
  • [4] General Exact Penalty Functions in Integer Programming
    白富生
    张连生
    吴至友
    Journal of Shanghai University, 2004, (01) : 19 - 23
  • [5] Steering exact penalty methods for nonlinear programming
    Byrd, Richard H.
    Nocedal, Jorge
    Waltz, Richard A.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02): : 197 - 213
  • [6] ON THE PENALTY APPROXIMATION OF QUADRATIC-PROGRAMMING PROBLEM
    DOSTAL, Z
    KYBERNETIKA, 1991, 27 (02) : 151 - 154
  • [7] THE DIFFERENTIABLE EXACT PENALTY FUNCTION FOR NONLINEAR SEMIDEFINITE PROGRAMMING
    Han, Le
    PACIFIC JOURNAL OF OPTIMIZATION, 2014, 10 (02): : 285 - 303
  • [8] Path following in the exact penalty method of convex programming
    Hua Zhou
    Kenneth Lange
    Computational Optimization and Applications, 2015, 61 : 609 - 634
  • [9] ONE EXACT PENALTY METHOD IN CONCAVE PROGRAMMING.
    Timokhov, A.V.
    1600,
  • [10] EXACT PENALTY FUNCTIONS IN NON-LINEAR PROGRAMMING
    HAN, SP
    MANGASARIAN, OL
    MATHEMATICAL PROGRAMMING, 1979, 17 (03) : 251 - 269