Simultaneous segmentation and anatomical labeling of the cerebral vasculature

被引:40
|
作者
Robben, David [1 ,3 ]
Tueretken, Engin [2 ,4 ]
Sunaert, Stefan [1 ,5 ,7 ]
Thijs, Vincent [1 ,6 ,8 ,9 ]
Wilms, Guy [5 ]
Fua, Pascal [2 ]
Maes, Frederik [1 ,3 ]
Suetens, Paul [1 ,3 ]
机构
[1] Katholieke Univ Leuven, MIRC, Leuven, Belgium
[2] Ecole Polytech Fed Lausanne, Comp Vis Lab, Lausanne, Switzerland
[3] Katholieke Univ Leuven, Dept Elect Engn, ESAT PSI, MIC, Leuven, Belgium
[4] Swiss Ctr Elect & Microtechnol CSEM, Neuchatel, Switzerland
[5] UZ Leuven, Dept Radiol, Leuven, Belgium
[6] Univ Leuven, Dept Neurol, Leuven, Belgium
[7] Katholieke Univ Leuven, Dept Imaging & Pathol, Translat MRI, Leuven, Belgium
[8] Katholieke Univ Leuven, Leuven Res Inst Neurosci & Dis LIND, Leuven, Belgium
[9] Vesalius Res Ctr, Neurobiol Lab, Leuven, Belgium
基金
比利时弗兰德研究基金会;
关键词
Cerebral vasculature; Segmentation; Centerline extraction; Anatomical labeling; Circle of Willis; Integer programming; CIRCLE; WILLIS; ARTERIES;
D O I
10.1016/j.media.2016.03.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel algorithm for the simultaneous segmentation and anatomical labeling of the cerebral vasculature. Unlike existing approaches that first attempt to obtain a good segmentation and then perform labeling, we optimize for both by simultaneously taking into account the image evidence and the prior knowledge about the geometry and connectivity of the vasculature. This is achieved by first constructing an overcomplete graph capturing the vasculature, and then selecting and labeling the subset of edges that most likely represents the true vasculature. We formulate the latter problem as an Integer Program (IP), which can be solved efficiently to provable optimality. We evaluate our approach on a publicly available dataset of 50 cerebral MRA images, and demonstrate that it compares favorably against state-of-the-art methods. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 215
页数:15
相关论文
共 50 条
  • [1] Simultaneous Segmentation and Anatomical Labeling of the Cerebral Vasculature
    Robben, David
    Tueretken, Engin
    Sunaert, Stefan
    Thijs, Vincent
    Wilms, Guy
    Maes, Frederik
    Suetens, Paul
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I, 2014, 8673 : 307 - +
  • [3] Automatic anatomical labeling of the complete cerebral vasculature in mouse models
    Ghanavati, Sahar
    Lerch, Jason P.
    Sled, John G.
    NEUROIMAGE, 2014, 95 : 117 - 128
  • [4] Probabilistic Labeling of Cerebral Vasculature on MR Angiography
    Quachtran, Benjamin
    Sheth, Sunil
    Saver, Jeffrey L.
    Liebeskind, David S.
    Scalzo, Fabien
    ADVANCES IN VISUAL COMPUTING, PT I (ISVC 2015), 2015, 9474 : 538 - 548
  • [5] An Anatomical Model of the Cerebral Vasculature and the Autoregulation of Cerebral Blood Flow
    Lucas, C.
    Payne, S. J.
    6TH WORLD CONGRESS OF BIOMECHANICS (WCB 2010), PTS 1-3, 2010, 31 : 446 - 449
  • [6] A Review on Segmentation and Modeling of Cerebral Vasculature for Surgical Planning
    Ajam, Azimah
    Abd Aziz, Azrina
    Asirvadam, Vijanth Sagayan
    Muda, Ahmad Sobri
    Faye, Ibrahima
    Gardezi, S. Jamal Safdar
    IEEE ACCESS, 2017, 5 : 15222 - 15240
  • [7] VESCA: Semi-Automated Segmentation of Cerebral Vasculature in Angiograms
    Stier, Noah
    Garduno, Cristopher
    Sheth, Sunil
    Duckwiler, Gary
    Saver, Jeffrey
    Liebeskind, David
    Scalzo, Fabien
    STROKE, 2016, 47
  • [8] Knowledge-based extraction of cerebral vasculature from anatomical MRI
    Ostergaard, LR
    Larsen, OV
    Haase, J
    Van Meer, F
    Evans, AC
    Collins, DL
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 170 - 183
  • [9] AUTOMATED ANATOMICAL LABELING OF THE CEREBRAL ARTERIES USING BELIEF PROPAGATION
    Bilgel, Murat
    Roy, Snehashis
    Carass, Aaron
    Nyquist, Paul A.
    Prince, Jerry L.
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [10] SOFT LABELING BY DISTILLING ANATOMICAL KNOWLEDGE FOR IMPROVED MS LESION SEGMENTATION
    Kats, Eytan
    Goldberger, Jacob
    Greenspan, Hayit
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1563 - 1566