The CCA-adding enzyme (tRNA nucleotidyltransferase) synthesizes and repairs the 3'-terminal CCA sequence of tRNA. The eubacterial, eukaryotic, and archaeal CCA-adding enzymes all share a single active-site signature motif, which identifies these enzymes as belonging to the nucleotidyltransferase superfamily, Here we show that mutations at Asp-53 or Asp-55 of the Sulfolobus shibatae signature sequence abolish addition of both C and A, demonstrating that a single active site is responsible for addition of both nucleotides. Mutations at Asp-106 (and to a lesser extent, at Glu-173 and Asp-215) selectively impaired addition of A, but not C, We have previously demonstrated that the tRNA acceptor stem remains fixed on the surface of the CCA-adding enzyme during C and A addition (Shi, P.-Y., Maizels, N., and Weiner, A. M. (1998) EMBO J, 17, 3197-3206). Taken together with this new evidence that there is a single active site for catalysis, our data suggest that specificity of nucleotide addition is determined by a process of collaborative templating: as the single active site catalyzes addition of each nucleotide, the growing 3'-end of the tRNA would progressively refold to create a binding pocket for addition of the next nucleotide.