Mean integrated square error for different estimators of the diffusion coefficient of a diffusion process

被引:1
|
作者
Bertrand, P [1 ]
机构
[1] Univ Blaise Pascal, Lab Math Appl, F-63177 Aubiere, France
[2] CNRS, UMR 6620, F-63177 Aubiere, France
关键词
D O I
10.1016/S0764-4442(99)80056-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X-t) be a diffusion process satisfying X-t = b(t, X-t)dt + theta(t)h(X-t)dW(t), a sample path of this process (X-t) is observed at discrete times ti = i Delta for i = 1,..., N. We compare two non parametric estimators of theta(t) which is assumed to be a piecewise constant function: wavelet estimator in the Haar basis and centred moving average estimator (CMAE), mean integrated square error (MISE) is proved to be most often smaller for CMAE. Numerical simulation is done to illustrate this fact. (C) Academie des Sciences/Elsevier, Paris
引用
收藏
页码:399 / 404
页数:6
相关论文
共 50 条