Inertial and Hodge-Tate weights of crystalline representations

被引:5
|
作者
Bartlett, Robin [1 ]
机构
[1] Max Planck Inst Math, Vivatgasse 7, D-53111 Bonn, Germany
基金
英国工程与自然科学研究理事会;
关键词
11S20; 11F80;
D O I
10.1007/s00208-019-01931-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an unramified extension of Q(p) and rho : G(K) -> GL(n)((Z) over bar (p)) a crystalline representation. If the Hodge-Tate weights of rho differ by at most p then we show that these weights are contained in a natural collection of weights depending only on the restriction to inertia of (rho) over bar = rho circle times((Z) over barp) (F) over bar (p). Our methods involve the study of a full subcategory of p-torsion Breuil-Kisin modules which we view as extending Fontaine-Laffaille theory to filtrations of length p.
引用
收藏
页码:645 / 681
页数:37
相关论文
共 50 条