GROUPS SATISFYING THE TWO-PRIME HYPOTHESIS WITH A COMPOSITION FACTOR ISOMORPHIC TO PSL2(q) FOR q ≥ 7

被引:2
|
作者
Lewis, Mark L. [1 ]
Liu, Yanjun [2 ]
Tong-Viet, Hung P. [3 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
[3] Binghamton Univ, Dept Math Sci, 4400 Vestal Pkwy East, Binghamton, NY 13902 USA
基金
中国国家自然科学基金;
关键词
character degrees; prime divisors;
D O I
10.21136/CMJ.2018.0027-17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and write cd(G) for the degree set of the complex irreducible characters of G. The group G is said to satisfy the two-prime hypothesis if for any distinct degrees a, b is an element of cd(G), the total number of (not necessarily different) primes of the greatest common divisor gcd(a, b) is at most 2. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL2(q) for q >= 7.
引用
收藏
页码:921 / 941
页数:21
相关论文
共 23 条