On-the-Fly Training of Atomistic Potentials for Flexible and Mechanically Interlocked Molecules

被引:7
|
作者
Kolodzeiski, Elena [1 ,2 ,3 ]
Amirjalayer, Saeed [1 ,2 ,3 ]
机构
[1] Westfalische Wilhelms Univ Munster, Phys Inst, D-48149 Munster, Germany
[2] Ctr Nanotechnol, D-48149 Munster, Germany
[3] Westfalische Wilhelms Univ Munster, Ctr Multiscale Theory & Computat, D-48149 Munster, Germany
关键词
FORCE-FIELD DEVELOPMENT; DYNAMICS SIMULATIONS; GENETIC ALGORITHMS; CHEMICAL TOPOLOGY; OPTIMIZATION; PARAMETERIZATION; ROTAXANES; SHUTTLES; MACHINES; MOTORS;
D O I
10.1021/acs.jctc.1c00497
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mechanically interlocked molecules have gained significant attention because of their unique ability to perform well-defined motions originating from their entanglement, which is important for the design of artificial molecular machines. Atomistic simulations based on force fields (FFs) provide detailed insights into such architectures at the molecular level enabling one to predict the resulting functionalities. However, the development of reliable FFs is still challenging and time-consuming, in particular for highly dynamic and interlocked structures such as rotaxanes, which exhibit a large number of different conformers. In the present work, we present an on-the-fly training (OTFT) algorithm. By a guided and nonguided phase space sampling, relevant reference data are automatically and continuously generated and included for the on-the-fly parametrization of the FF based on a population swapping genetic algorithm (psGA). The OTFT approach provides a fast and automated FF parametrization scheme and tackles problems caused by missing phase space information or the need for big data. We demonstrate the high accuracy of the developed FF for flexible molecules with respect to equilibrium and out-of-equilibrium properties. Finally, by applying the ab initio parametrized FF, molecular dynamic simulations were performed up to experimentally relevant time scales (ca. 1 mu s) enabling capture in detail of the structural evaluation and mapping out of the free-energy topology. The on-the-fly training approach thus provides a strong foundation toward automated FF developments and large-scale investigations of phenomena in and out of thermal equilibrium.
引用
收藏
页码:7010 / 7020
页数:11
相关论文
共 50 条
  • [1] On-the-Fly Training of Atomistic Potentials for Flexible and Mechanically Interlocked Molecules (vol 17, pg 7010, 2021)
    Kolodzeiski, Elena
    Amirjalayer, Saeed
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (01) : 596 - 597
  • [2] Photochromism in Mechanically Interlocked Molecules
    Hu, Fang
    Li, Ziyong
    Li, Xing
    Yin, Jun
    Liu, Sheng H.
    CURRENT ORGANIC CHEMISTRY, 2017, 21 (05) : 450 - 462
  • [3] On-the-fly training
    Melenchón, J
    Meler, L
    Iriondo, I
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, PROCEEDINGS, 2004, 3179 : 146 - 153
  • [4] On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations
    Jinnouchi, Ryosuke
    Miwa, Kazutoshi
    Karsai, Ferenc
    Kresse, Georg
    Asahi, Ryoji
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (17): : 6946 - 6955
  • [5] Mechanically interlocked and switchable molecules at surfaces
    Davis, Jason J.
    Orlowski, Grzegorz A.
    Rahman, Habibur
    Beer, Paul D.
    CHEMICAL COMMUNICATIONS, 2010, 46 (01) : 54 - 63
  • [6] Chiroptical Properties of Mechanically Interlocked Molecules
    David, Arthur H. G.
    Stoddart, J. Fraser
    ISRAEL JOURNAL OF CHEMISTRY, 2021, 61 (9-10) : 608 - 621
  • [7] Mechanically Interlocked Molecules Assembled by π-π Recognition
    Barin, Gokhan
    Coskun, Ali
    Fouda, Moustafa M. G.
    Stoddart, J. Fraser
    CHEMPLUSCHEM, 2012, 77 (03): : 159 - 185
  • [8] Mechanically Interlocked Molecules for Biomedical Applications
    Riebe, Jan
    Niemeyer, Jochen
    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2021, 2021 (37) : 5106 - 5116
  • [9] The Burgeoning of Mechanically Interlocked Molecules in Chemistry
    Sluysmans, Damien
    Stoddart, J. Fraser
    TRENDS IN CHEMISTRY, 2019, 1 (02): : 185 - 197
  • [10] Electrochromic materials using mechanically interlocked molecules
    Ikeda, Taichi
    Stoddart, James Fraser
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2008, 9 (01)