Deep learning approach to bacterial colony classification

被引:93
|
作者
Zielinski, Bartosz [1 ]
Plichta, Anna [2 ]
Misztal, Krzysztof [1 ]
Spurek, Przemyslaw [1 ]
Brzychczy-Wloch, Monika [3 ]
Ochonska, Dorota [4 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, 6 Lojasiewicza St, PL-30348 Krakow, Poland
[2] Cracow Univ Technol, Dept Comp Sci, 24 Warszawska St, PL-31422 Krakow, Poland
[3] Jagiellonian Univ, Med Coll, Chair Microbiol, Dept Bacteriol Microbial Ecol & Parasitol, 18 Czysta St, PL-31121 Krakow, Poland
[4] Jagiellonian Univ, Med Coll, Fac Med, Chair Microbiol,Dept Infect Epidemiol, 18 Czysta St, PL-31121 Krakow, Poland
来源
PLOS ONE | 2017年 / 12卷 / 09期
关键词
AUTOMATIC IDENTIFICATION;
D O I
10.1371/journal.pone.0184554
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In microbiology it is diagnostically useful to recognize various genera and species of bacteria. It can be achieved using computer-aided methods, which make the recognition processes more automatic and thus significantly reduce the time necessary for the classification. Moreover, in case of diagnostic uncertainty (the misleading similarity in shape or structure of bacterial cells), such methods can minimize the risk of incorrect recognition. In this article, we apply the state of the art method for texture analysis to classify genera and species of bacteria. This method uses deep Convolutional Neural Networks to obtain image descriptors, which are then encoded and classified with Support Vector Machine or Random Forest. To evaluate this approach and to make it comparable with other approaches, we provide a new dataset of images. DIBaS dataset (Digital Image of Bacterial Species) contains 660 images with 33 different genera and species of bacteria.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A Deep Learning Approach to Bacterial Colony Segmentation
    Andreini, Paolo
    Bonechi, Simone
    Bianchini, Monica
    Mecocci, Alessandro
    Scarselli, Franco
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 : 522 - 533
  • [2] A Deep (Learning) Dive Into Bacterial Classification
    Daniel Fuentes-Villegas, Alberto
    Hernandez, Haydee O.
    Olveres, Jimena
    Escalante-Ramirez, Boris
    [J]. OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR IMAGING APPLICATIONS VIII, 2024, 12998
  • [3] Bacterial colony size growth estimation by deep learning
    Nagy S.Á.
    Makrai L.
    Csabai I.
    Tőzsér D.
    Szita G.
    Solymosi N.
    [J]. BMC Microbiology, 23 (1)
  • [4] Deep Learning Approach for Image Classification
    Panigrahi, Santisudha
    Nanda, Anuja
    Swamkar, Tripti
    [J]. 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND BUSINESS ANALYTICS (ICDSBA 2018), 2018, : 511 - 516
  • [5] YOLO-based Deep Learning to Automated Bacterial Colony Counting
    Whipp, Jaken
    Dong, Aijuan
    [J]. 2022 IEEE EIGHTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2022), 2022, : 120 - 124
  • [6] Annotated dataset for deep-learning-based bacterial colony detection
    Makrai, Laszlo
    Fodroczy, Bettina
    Nagy, Sara Agnes
    Czeiszing, Peter
    Csabai, Istvan
    Szita, Geza
    Solymosi, Norbert
    [J]. SCIENTIFIC DATA, 2023, 10 (01)
  • [7] Annotated dataset for deep-learning-based bacterial colony detection
    László Makrai
    Bettina Fodróczy
    Sára Ágnes Nagy
    Péter Czeiszing
    István Csabai
    Géza Szita
    Norbert Solymosi
    [J]. Scientific Data, 10
  • [8] A Deep Learning Approach to Diabetic Retinopathy Classification
    Oishi, Anika Mehjabin
    Tawfiq-Uz-Zaman, Md
    Emon, Mohammad Billal Hossain
    Momen, Sifat
    [J]. CYBERNETICS PERSPECTIVES IN SYSTEMS, VOL 3, 2022, 503 : 417 - 425
  • [9] RockDNet: Deep Learning Approach for Lithology Classification
    Abdullah, Mohammed A. M.
    Mohammed, Ahmed A.
    Awad, Sohaib R.
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [10] Deep Learning Approach for Classification of Animal Videos
    Manohar, N.
    Kumar, Y. H. Sharath
    Kumar, G. Hemantha
    Rani, Radhika
    [J]. DATA ANALYTICS AND LEARNING, 2019, 43 : 421 - 431