EXPONENTIAL STABILITY AND REGULARITY OF COMPRESSIBLE VISCOUS MICROPOLAR FLUID WITH CYLINDER SYMMETRY

被引:1
|
作者
Sun, Zhi-Ying [1 ]
Huang, Lan [1 ]
Yang, Xin-Guang [2 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Math & Stat, Zhengzhou 450011, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2020年 / 28卷 / 02期
关键词
Exponential stability; micropolar fluid; cylindrical symmetry; regularity; GLOBAL WELL-POSEDNESS; BOUNDARY-VALUE-PROBLEM; LARGE-TIME BEHAVIOR; SPHERICAL-SYMMETRY; 3-D FLOW; CYLINDRICAL SYMMETRY; EXISTENCE; MODEL; SYSTEM;
D O I
10.3934/era.2020045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with three-dimensional compressible viscous and heat-conducting micropolar fluid in the domain to the subset of R-3 bounded with two coaxial cylinders that present the solid thermoinsulated walls, being in a thermodynamical sense perfect and polytropic. We prove that the regularity and the exponential stability in H-2.
引用
收藏
页码:861 / 878
页数:18
相关论文
共 50 条