Optimal semi-oblique tiling

被引:16
|
作者
Andonov, R
Balev, S
Rajopadhye, S
Yanev, N
机构
[1] Univ Valenciennes, LAMIH, ROI, F-59313 Le Mont Houy 9, Valenciennes, France
[2] Univ Havre, Lab Informat Havre, F-76058 Le Havre, France
[3] Colorado State Univ, Dept Comp Sci, Ft Collins, CO 80523 USA
[4] Inst Math & Informat, Sofia 1113, Bulgaria
关键词
2D uniform recurrences; biological sequence alignment; BSP model; communication-compuation granularity; distributed memory machines; locality; loop blocking; MPI; perfect loop nests; SPMD;
D O I
10.1109/TPDS.2003.1233716
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For 2D iteration space tiling, we address the problem of determining the tile parameter's that minimize the total execution time on a parallel machine. We consider uniform dependency computations tiled so that (at least) one of the tile boundaries is parallel to the domain boundaries. We determine the optimal tile size as a closed form solution. In addition, we determine the optimal number of processors and also the optimal slope of the oblique tile boundary. Our results are based on the BSP model, which assures the portability of the results. Our predictions are justified on a sequence global alignment problem specialized to similar sequences using Fickett's k-band algorithm, for which our optimal semi-oblique tiling yields an improvement of a factor of 2.5 over orthogonal tiling. Our optimal solution requires a block-cyclic distribution of tiles to processors. The best one can obtain with only block distribution (as many authors require) is three times slower. Furthermore, our best running time is within 10 percent of the "predicted theoretical peak" performance of the machine!
引用
收藏
页码:944 / 960
页数:17
相关论文
共 50 条
  • [1] USE OF VERTICAL AERIAL IMAGES FOR SEMI-OBLIQUE MAPPING
    Poli, D.
    Moe, K.
    Legat, K.
    Toschi, I.
    Lago, F.
    Remondino, F.
    [J]. ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1): : 493 - 498
  • [2] Optimal orthogonal tiling
    Andonov, R
    Rajopadhye, S
    Yanev, N
    [J]. EURO-PAR '98 PARALLEL PROCESSING, 1998, 1470 : 480 - 490
  • [3] SEARCHING FOR THE OPTIMAL CURVELET TILING
    Al-Marzouqi, Hasan
    AlRegib, Ghassan
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1626 - 1630
  • [4] OPTIMAL TILING OF HETEROGENEOUS IMAGES
    KERTESZ, M
    CSILLAG, F
    KUMMERT, A
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1995, 16 (08) : 1397 - 1415
  • [5] Optimal Parallelogram Selection for Hierarchical Tiling
    Zhou, Xing
    Garzaran, Maria J.
    Padua, David A.
    [J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2014, 11 (04)
  • [6] Tiling solutions for optimal biological sensing
    Walczak, Aleksandra M.
    [J]. COMPTES RENDUS PHYSIQUE, 2015, 16 (08) : 761 - 772
  • [7] OPTIMAL TILING FOR LARGE CARTOGRAPHIC DATABASES
    GOODCHILD, MF
    [J]. AUTO CARTO 9 : NINTH INTERNATIONAL SYMPOSIUM ON COMPUTER-ASSISTED CARTOGRAPHY, 1989, : 444 - 451
  • [8] Optimal Partial Tiling of Manhattan Polyominoes
    Bodini, Olivier
    Lumbroso, Jeremie
    [J]. DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2009, 5810 : 79 - 91
  • [9] An Optimal Scheduling Scheme for Tiling in Distributed Systems
    Kyriakopoulos, Konstantinos
    Chronopoulos, Anthony T.
    Ni, Lionel
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, 2007, : 267 - +
  • [10] An Optimal Algorithm for Tiling the Plane with a Translated Polyomino
    Winslow, Andrew
    [J]. ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 3 - 13