Irregular Sets for Piecewise Monotonic Maps

被引:1
|
作者
Nakano, Yushi [1 ]
Yamamoto, Kenichiro [2 ]
机构
[1] Tokai Univ, Dept Math, Hiratsuka, Kanagawa 259129, Japan
[2] Nagaoka Univ Technol, Dept Gen Educ, Niigata 9402188, Japan
关键词
Irregular set; historic behavior; piecewise monotonic map; coding space; Markov Diagram; TOPOLOGICAL-ENTROPY; VARIATIONAL PRINCIPLE; GENERIC PROPERTIES; INVARIANT-MEASURES; TRANSFORMATIONS; INTERVAL; DENSITY;
D O I
10.3836/tjm/1502179349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any transitive piecewise monotonic map for which the set of periodic measures is dense in the set of ergodic invariant measures (such as monotonic mod one transformations and piecewise monotonic maps with two monotonic pieces), we show that the set of points for which the Birkhoff average of a continuous function does not exist (called the irregular set) is either empty or has full topological entropy. This generalizes Thompson's theorem for irregular sets of beta-transformations, and reduces a complete description of irregular sets of transitive piecewise monotonic maps to the Hofbauer-Raith problem on the density of periodic measures.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 50 条
  • [1] OBSERVABLE LYAPUNOV IRREGULAR SETS FOR PLANAR PIECEWISE EXPANDING MAPS
    Nakano, Yushi
    Soma, Teruhiko
    Yamamoto, Kodai
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (07) : 2737 - 2755
  • [2] HAUSDORFF DIMENSION FOR PIECEWISE MONOTONIC MAPS
    RAITH, P
    [J]. STUDIA MATHEMATICA, 1989, 94 (01) : 18 - 33
  • [3] On distributional spectrum of piecewise monotonic maps
    Jan Tesarčík
    Vojtěch Pravec
    [J]. Aequationes mathematicae, 2023, 97 : 133 - 145
  • [4] On distributional spectrum of piecewise monotonic maps
    Tesarcik, Jan
    Pravec, Vojtech
    [J]. AEQUATIONES MATHEMATICAE, 2023, 97 (01) : 133 - 145
  • [5] On the mixing coefficients of piecewise monotonic maps
    Jon Aaronson
    Hitoshi Nakada
    [J]. Israel Journal of Mathematics, 2005, 148 : 1 - 10
  • [6] On the mixing coefficients of piecewise monotonic maps
    Aaronson, J
    Nakada, H
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 1 - 10
  • [7] Piecewise Monotonic Maps with a Common Piecewise Constant Stationary Density
    Wang, Zi
    Ding, Jiu
    Rhee, Noah
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (08)
  • [8] Piecewise Monotonic Maps with a Common Piecewise Constant Stationary Density
    Zi Wang
    Jiu Ding
    Noah Rhee
    [J]. Journal of Statistical Physics, 190
  • [9] Local dimension for piecewise monotonic maps on the interval
    Hofbauer, F
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 : 1119 - 1142
  • [10] Spectral decomposition of piecewise linear monotonic maps
    Antoniou, I
    Qiao, BI
    [J]. CHAOS SOLITONS & FRACTALS, 1996, 7 (11) : 1895 - 1911