Parabolic approximation to variational problems with double obstacles

被引:0
|
作者
Tao, YS [1 ]
Gao, GZ [1 ]
机构
[1] Dong Hua Univ, Dept Appl Math, Shanghai 200051, Peoples R China
关键词
variational problem; double obstacles; parabolic approximation; uniform estimates; nonlinear boundary value problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss an elliptic variational inequality with double obstacles in a finite interval which can be rewritten as a nonlinear boundary value problem. We use a parabolic initial-boundary value problem to approximate it and prove that every smooth solution of the variational problem can be regarded as a limit of a smooth solution of a parabolic problem. From the viewpoint of numerical computation, parabolic equations are easy and can be solved using extremely stable standard computer routines. Therefore, our result is useful both for the theory of differential equations. and for the numerical computation. (C) 2001 Academic Press.
引用
收藏
页码:652 / 659
页数:8
相关论文
共 50 条
  • [1] A fully discrete approximation for control problems governed by parabolic variational inequalities
    Bergounioux, M
    Zidani, H
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) : 2014 - 2033
  • [2] Adaptive variational discretization approximation method for parabolic optimal control problems
    Tang, Yuelong
    Hua, Yuchun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [3] Adaptive variational discretization approximation method for parabolic optimal control problems
    Yuelong Tang
    Yuchun Hua
    [J]. Journal of Inequalities and Applications, 2020
  • [4] PENALTY APPROXIMATION METHOD FOR A DOUBLE OBSTACLE QUASILINEAR PARABOLIC VARIATIONAL INEQUALITY PROBLEM
    Duan, Yarui
    Wu, Pengcheng
    Zhou, Yuying
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (03) : 1770 - 1789
  • [5] Error identities for variational problems with obstacles
    Repin, S.
    Valdman, J.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (04): : 635 - 658
  • [6] VARIATIONAL PROBLEMS WITH OBSTACLES AND A VOLUME CONSTRAINT
    HILDEBRANDT, S
    WENTE, HC
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1973, 135 (01) : 55 - 68
  • [7] CONVERGENCE ESTIMATE FOR AN APPROXIMATION OF A PARABOLIC VARIATIONAL INEQUALITY
    JOHNSON, C
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) : 599 - 606
  • [8] PARTICULAR WEAK SOLUTION OF A PARABOLIC VARIATIONAL IRREGULARITY WITH 2 OBSTACLES
    NAKOULIMA, O
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (17): : 1037 - 1040
  • [9] Nondivergence elliptic and parabolic problems with irregular obstacles
    Sun-Sig Byun
    Ki-Ahm Lee
    Jehan Oh
    Jinwan Park
    [J]. Mathematische Zeitschrift, 2018, 290 : 973 - 990
  • [10] Approximation of variational eigenvalue problems
    S. I. Solov’ev
    [J]. Differential Equations, 2010, 46 : 1030 - 1041