Changing presidential approval: Detecting and understanding change points in interval censored polling data
被引:1
|
作者:
Tian, Jiahao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Engn Syst & Environm, Charlottesville, VA 22903 USAUniv Virginia, Engn Syst & Environm, Charlottesville, VA 22903 USA
Tian, Jiahao
[1
]
Porter, Michael D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Engn Syst & Environm, Charlottesville, VA 22903 USA
Univ Virginia, Sch Data Sci, Charlottesville, VA USAUniv Virginia, Engn Syst & Environm, Charlottesville, VA 22903 USA
Porter, Michael D.
[1
,2
]
机构:
[1] Univ Virginia, Engn Syst & Environm, Charlottesville, VA 22903 USA
[2] Univ Virginia, Sch Data Sci, Charlottesville, VA USA
aggregated data;
Bayesian model averaging;
change point detection;
EM algorithm;
interval censoring;
joinpoint regression;
polling;
presidential approval;
segmented regression;
JOINPOINT REGRESSION;
TRENDS;
IMPACT;
D O I:
10.1002/sta4.463
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Understanding how a society views certain policies, politicians, and events can help shape public policy, legislation, and even a political candidate's campaign. This paper focuses on using aggregated, or interval censored, polling data to estimate the times when the public opinion shifts on the US president's job approval. The approval rate is modelled as a Poisson segmented (joinpoint) regression with the EM algorithm used to estimate the model parameters. Inference on the change points is carried out using BIC based model averaging. This approach can capture the uncertainty in both the number and location of change points. The model is applied to president Trump's job approval rating during 2020. Three primary change points are discovered and related to significant events and statements.
机构:
Univ Alberta, Alberta Sch Business, Dept Finance & Stat Anal, Edmonton, AB T6G 2R6, CanadaUniv Alberta, Alberta Sch Business, Dept Finance & Stat Anal, Edmonton, AB T6G 2R6, Canada
Cribben, Ivor
Wager, Tor D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Psychol & Neurosci, Boulder, CO 80309 USAUniv Alberta, Alberta Sch Business, Dept Finance & Stat Anal, Edmonton, AB T6G 2R6, Canada
Wager, Tor D.
Lindquist, Martin A.
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USAUniv Alberta, Alberta Sch Business, Dept Finance & Stat Anal, Edmonton, AB T6G 2R6, Canada