Weighted geometric set cover with rectangles of bounded integer side lengths

被引:0
|
作者
Madireddy, Raghunath Reddy [1 ]
Mudgal, Apurva [2 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Comp Sci & Informat Syst, Hyderabad Campus, Hyderabad 500078, Telangana, India
[2] Indian Inst Technol Ropar, Dept Comp Sci & Engn, Rupnagar 140001, Punjab, India
关键词
Axis-parallel rectangles; Bounded integer side lengths; Geometric set cover; Sweep-line method; PTAS; NP-hardness; PACKING;
D O I
10.1016/j.dam.2022.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the gradation of the complexity of the weighted set cover problem with axis-parallel rectangles whose side lengths are bounded integers. We show that the mod-one method of Chan and Hu (2015) for unit squares can be extended to these objects to get a polynomial-time approximation scheme (PTAS). We further show that the problem has a polynomial-time algorithm when all rectangles intersect a given horizontal line. On the contrary, we show that even the unweighted version of the problem is NP-hard when every rectangle intersects at least one of two given horizontal lines at the unit vertical distance. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 55
页数:20
相关论文
共 50 条
  • [1] WEIGHTED GEOMETRIC SET COVER PROBLEMS REVISITED
    Har-Peled, Sariel
    Lee, Mira
    [J]. JOURNAL OF COMPUTATIONAL GEOMETRY, 2012, 3 (01) : 65 - 85
  • [2] NP-hardness of geometric set cover and hitting set with rectangles containing a common point
    Madireddy, Raghunath Reddy
    Mudgal, Apurva
    [J]. INFORMATION PROCESSING LETTERS, 2019, 141 : 1 - 8
  • [3] Weighted Geometric Set Cover via Quasi-Uniform Sampling
    Varadarajan, Kasturi
    [J]. STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 641 - 647
  • [4] On Geometric Set Cover for Orthants
    Bringmann, Karl
    Kisfaludi-Bak, Sander
    Pilipczuk, Michal
    van Leeuwen, Erik Jan
    [J]. 27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [5] Dynamic Geometric Set Cover and Hitting Set
    Agarwal, Pankaj
    Chang, Hsien-Chih
    Suri, Subhash
    Xiao, Allen
    Xue, Jie
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (04)
  • [6] WEIGHTED GEOMETRIC SET MULTI-COVER VIA QUASI-UNIFORM SAMPLING
    Bansal, Nikhil
    Pruhs, Kirk
    [J]. JOURNAL OF COMPUTATIONAL GEOMETRY, 2016, 7 (01) : 221 - 236
  • [7] Weighted Geometric Set Multi-cover via Quasi-uniform Sampling
    Bansal, Nikhil
    Pruhs, Kirk
    [J]. ALGORITHMS - ESA 2012, 2012, 7501 : 145 - 156
  • [8] Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack
    Grandoni, Fabrizio
    Kratsch, Stefan
    Wiese, Andreas
    [J]. 27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [9] On the geometric priority set cover problem
    Banik, Aritra
    Raman, Rajiv
    Ray, Saurabh
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2023, 112
  • [10] Dynamic Geometric Set Cover, Revisited
    Chan, Timothy M.
    He, Qizheng
    Suri, Subhash
    Xue, Jie
    [J]. PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 3496 - 3528