Variable Length Joint Source-Channel Coding of Text Using Deep Neural Networks

被引:0
|
作者
Rao, Milind [1 ]
Farsad, Nariman [1 ]
Goldsmith, Andrea [1 ]
机构
[1] Stanford Univ, Elect Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider joint source and channel coding of natural language over a noisy channel using deep learning. While the typical approach based on separate source and channel code design minimizes bit error rates, the proposed deep learning approach preserves semantic information of sentences. In particular, unlike previous work which used a fixed-length encoding per sentence, a variable-length neural network encoder is presented. The performance of this new architecture is compared to the one with fixed-length encoding per sentence. We show that the variable-length encoder has a lower word error rate compared with the fixed-length encoder as well as separate source and channel coding schemes across several different communication channels.
引用
收藏
页码:81 / 85
页数:5
相关论文
共 50 条
  • [1] DEEP LEARNING FOR JOINT SOURCE-CHANNEL CODING OF TEXT
    Farsad, Nariman
    Rao, Milind
    Goldsmith, Andrea
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2326 - 2330
  • [2] Joint Source-Channel Coding Using Variable-Length Codes
    V. B. Balakirsky
    [J]. Problems of Information Transmission, 2001, 37 (1) : 10 - 23
  • [3] Analog Joint Source-Channel Coding for Distributed Functional Compression using Deep Neural Networks
    Saidutta, Yashas Malur
    Abdi, Afshin
    Fekri, Faramarz
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2429 - 2434
  • [4] Neural Joint Source-Channel Coding
    Choi, Kristy
    Tatwawadi, Kedar
    Grover, Aditya
    Weissman, Tsachy
    Ermon, Stefano
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [5] Source and joint source-channel decoding of variable length codes
    Jeanne, M
    Carlach, JC
    Siohan, P
    Guivarch, L
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2002, : 768 - 772
  • [6] The Reliability Function of Variable-Length Lossy Joint Source-Channel Coding With Feedback
    Truong, Lan V.
    Tan, Vincent Y. F.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 5028 - 5042
  • [7] On the performance of parallel concatenated joint source-channel coding with variable-length codes
    Kliewer, J
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 395 - 395
  • [8] DISTRIBUTED IMAGE TRANSMISSION USING DEEP JOINT SOURCE-CHANNEL CODING
    Wang, Sixian
    Yang, Ke
    Dai, Jincheng
    Niu, Kai
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5208 - 5212
  • [9] Joint Source-Channel Coding with Neural Networks for Analog Data Compression and Storage
    Zarcone, Ryan
    Paiton, Dylan
    Anderson, Alex
    Engel, Jesse
    Wong, H. S. Philip
    Olshausen, Bruno
    [J]. 2018 DATA COMPRESSION CONFERENCE (DCC 2018), 2018, : 147 - 156
  • [10] Deep Joint Source-Channel Coding for Semantic Communications
    Xu, Jialong
    Tung, Tze-Yang
    Ai, Bo
    Chen, Wei
    Sun, Yuxuan
    Gunduz, Deniz
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (11) : 42 - 48