The pq-condition for 3-manifold groups

被引:1
|
作者
Gadgil, S [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
D O I
10.1090/S0002-9939-00-05880-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an elementary, topological proof of the fact that any subgroup of order pq of a finite 3-manifold group is cyclic if p and q are distinct odd primes. This condition, together with related results of Milnor and Reidemeister, implies that such a group acts orthogonally on some sphere.
引用
收藏
页码:1873 / 1875
页数:3
相关论文
共 50 条
  • [1] COHOPFICITY OF 3-MANIFOLD GROUPS
    GONZALEZACUNA, F
    WHITTEN, W
    TOPOLOGY AND ITS APPLICATIONS, 1994, 56 (01) : 87 - 97
  • [2] DIVERGENCE IN 3-MANIFOLD GROUPS
    GERSTEN, SM
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (06) : 633 - 647
  • [3] Orderable 3-manifold groups
    Boyer, S
    Rolfsen, D
    Wiest, B
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (01) : 243 - +
  • [4] 3-MANIFOLD GROUPS - SURVEY
    JACO, W
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (07): : A732 - A733
  • [5] IMBEDDINGS OF 3-MANIFOLD GROUPS
    GONZALEZACUNA, F
    WHITTEN, WC
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 99 (474) : 1 - 55
  • [6] Quasiconvexity in 3-manifold groups
    Hoang Thanh Nguyen
    Hung Cong Tran
    Yang, Wenyuan
    MATHEMATISCHE ANNALEN, 2020, 381 (1-2) : 405 - 437
  • [7] Quasiconvexity in 3-manifold groups
    Hoang Thanh Nguyen
    Hung Cong Tran
    Wenyuan Yang
    Mathematische Annalen, 2021, 381 : 405 - 437
  • [8] EPIMORPHISMS OF 3-MANIFOLD GROUPS
    Boileau, Michel
    Friedl, Stefan
    QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (03): : 931 - 942
  • [9] Isospectrality and 3-manifold groups
    Ruberman, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) : 2467 - 2471
  • [10] VIRTUAL FIBER GROUPS IN 3-MANIFOLD GROUPS
    SOMA, T
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1991, 43 : 337 - 354